Year 1 Monitoring Report for Stream Mitigation of South Muddy Creek Tributaries (Queen Property)

South Muddy Creek Tributaries McDowell County, NC SCO # D04006-01

Prepared for: NCDENR – EEP 2728 Capital Blvd, Suite 1H 103 Raleigh NC 27604

Submitted: September 2007

Prepared by:

Wetlands Resource Center

3970 Bowen Road Canal Winchester, Ohio 43110 Project Manager: Cal Miller P: (614) 864-7511 F: (614) 866-3691

And

EMH&T, Inc. 5500 New Albany Road Columbus, Ohio 43054 Project Manager: Miles Hebert P: (614) 775-4205 F: (614) 775-4802 Main: (614) 775-4500

Table of Contents

I.	Exe	cutive Summary	1
II.	Pro	ect Background	2
	A.	Location and Setting	
	B.	Project Structure, Mitigation Type, Approach and Objectives	
	C.	Project History and Background	
	D.	Monitoring Plan View	
III.	Pro	ect Condition and Monitoring Results	16
	Α.	Vegetation Assessment	
		1. Soil Data	
		2. Vegetative Problem Areas	
		3. Vegetative Problem Areas Plan View	
		4. Stem Counts	
		5. Vegetation Plot Photos	
	B.	Stream Assessment	
		1. Hydrologic Criteria	
		2. Stream Problem Areas	
		3. Stream Problem Areas Plan View	
		4. Stream Problem Areas Photos	
		5. Fixed Station Photos	
		6. Stability Assessment	
		7. Quantitative Measures	
IV.	Met	hodology	
<u>List</u>	of Fig	ures	
Figu	ro 1	Location Map	
		Monitoring Plan View	
1 150			
List	of Ta	<u>bles</u>	
Tabl	e I.	Project Structure Table	

- Table II.
 Project Mitigation Objectives Table
- Table III. Project Activity and Reporting History
- Table IV. Project Contact Table
- Table V. Project Background Table
- Table VI. Preliminary Soil Data
- Table VII. Vegetative Problem Areas
- Table VIII.
 Stem Counts for Each Species Arranged by Plot
- Table IX.Stream Problem Areas
- Table X.
 Categorical Stream Feature Visual Stability Assessment
- Table XI.
 Baseline Morphology and Hydraulic Summary

List of Appendices

Appendix A Vegetation Raw Data

- 1. Vegetation Monitoring Plot Photos
- 2. Vegetation Data Tables

Appendix B Geomorphologic Raw Data

- 1. Stream Problem Areas Plan View
- 2. Stream Problem Area Photos
- 3. Fixed Station Photos
- 4. Table B1. Qualitative Visual Stability Assessment
- 5. Cross Section Plots
- 6. Longitudinal Plots
- 7. Pebble Count Plots

I. EXECUTIVE SUMMARY

The South Muddy Creek Tributaries restoration project is located near Dysartsville in McDowell County, North Carolina. The stream channels included in this project are designated as Tributary A, A2, B and C. Prior to restoration, Tributaries A and A2 were drainage channels that had experienced modification in the form of ditching and vegetative management. Tributaries B and C were natural channels that were in a degraded condition attributed to head-cutting and streambank erosion exacerbated by cattle intrusion. The project consists of a combination of Priority 1 and Priority 2 Restoration and Enhancement Level 1. The project goal for the restoration plan, completed in 2005, was to re-establish geomorphological features consistent with natural stream channel characteristics. Elements of the restoration design included grade control and bank stabilization using natural materials and native plantings, reconnection of the channels to functional floodplains, and the incorporation of instream habitat features including riffle/pool complexes to re-establish, sort and transport substrate materials. The following report documents the Year 1 Annual Monitoring for this project.

Monitoring of the vegetation was completed in September 2006 using the methodology of the Carolina Vegetation Survey. Stem counts completed in 30 vegetation plots showed an average density of 284 stems per acre for the site. This density does not meet the success criteria of 320 stems/acre after three years of monitoring. Eighteen of the thirty vegetation plots fall below this threshold number; these plots are scattered throughout the project area. Additional trees and shrubs were planted in April, 2007 to bring the average live stem density to 390 stems per acre, meeting the three year threshold of 320 stems per acre.

Monitoring of the stream identified a number of problem areas along the tributaries of South Muddy Creek, including areas of aggradation, bank failure and bank scour. The problem areas along the streams appear to be limited to only a few areas for each tributary, concentrated within a few hundred feet of channel length. Areas of erosion have resulted in bank scour along meander bends or around riffles and log sills. A few areas of aggradation have resulted in bar formation in the channel near riffle areas. Despite the few areas along meander bends and in the general stream bed with erosion and sedimentation problems, the majority of the stream channels remained stable. The median particle sizes of the stream channels ranged from very fine to very coarse gravel in the riffle/run areas, and silt to fine sand in the pool/glide areas. Remedial maintenance work on the stream channel is not planned at this time.

II. PROJECT BACKGROUND

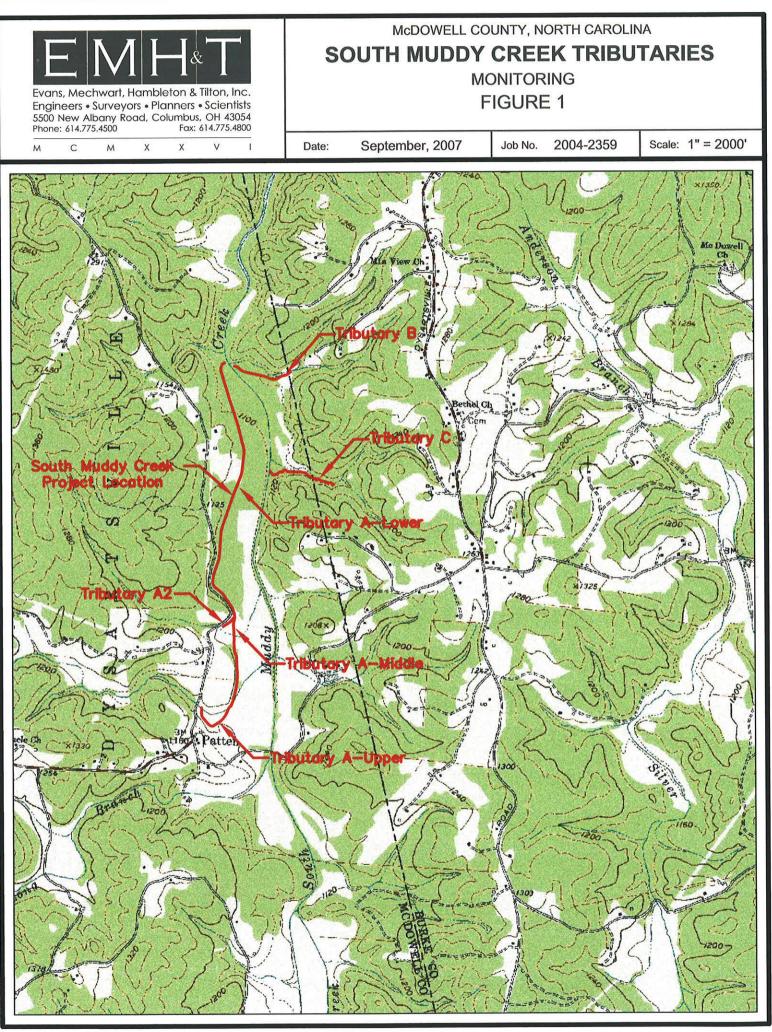
A. Location and Setting

The project is located in McDowell County, North Carolina, approximately two miles south of Interstate 40, between Marion and Morganton near the community of Dysartsville. The tributaries lie east of Muddy Creek Road, north of Pinnacle Church Road and west of Dysartsville Road, as shown on Figure 1. The stream channels included in this project are designated as Tributary A, A2, B and C. Tributaries A, B and C confluence directly with South Muddy Creek. Tributary A2 confluences with Tributary A.

The directions to the project site are as follows:

From Marion, follow Interstate 40 east to Dysartsville Road (Exit 94). Turn right onto Dysartsville Road to travel south for approximately 2 miles to Pinnacle Church Road. Follow Pinnacle Church Road to Muddy Creek Road, and turn right. The project site is on the east side of the road. This is private property; access to the stream corridor is limited to the dedicated ingress/egress included as part of the recorded Conservation Easement. Coordination with the property owner is encouraged prior to accessing the property.

B. Project Structure, Mitigation Type, Approach and Objectives


Pre-restoration land use surrounding the project tributaries consisted of agricultural croplands along Tributaries A and A2 and pastureland for cattle along Tributaries B and C. The upper reaches of Tributaries A2, B and C were characterized by a mix of pastureland and limited wooded corridor. Tributaries A and A2 were drainage channels that had experienced modification in the form of ditching and vegetative management prior to restoration. Tributaries B and C are natural channels that, prior to restoration, were in a degraded condition attributed to head-cutting and streambank failure and erosion exacerbated by cattle intrusion and associated hoof shear. All of the tributary channels, prior to restoration, had narrow or denuded riparian corridors.

Tributaries A, A2 and B were surrounded by either cropland or pasture with no significant buffer prior to restoration. Tributaries B and C lacked cattle intrusion fencing that adversely impacted streambank stability. Tributary C was less degraded, prior to restoration, in that it had a significant wooded riparian corridor on the south (left) bank with well sorted and well graded bed materials. However, Tributary C was impacted by a significantly degraded riparian corridor on the north (right) bank, with numerous locations of streambank erosion and failure associated with cattle intrusion.

Restoration of the project streams re-established geomorphological features consistent with natural stream channel characteristics. Results achieved are listed below:

- Bankfull channels constructed with the appropriate geometries to convey bankfull flows and transport suspended and bedload materials available to the streams
- Stable channel patterns consistent with natural streams in the region
- Grade control and bank stabilization features that enhance environmental attributes of the stream channels though the use of natural materials and native plantings
- In-stream habitat features, including riffle/pool complexes to re-establish, sort and transport substrate materials available to the streams
- Reconnection of project stream channels to functional floodplains
- Extensive indigenous instream and riparian revetment

June, 2007 Monitoring Year 1 of 5 Page 2

Restoration of Tributaries A, A2, and B was accomplished through the modification of the existing pattern, profile and dimension of the tributary channels to a stable condition. The restored channels are on an alignment that is offset from the pre-existing stream channels. Post-construction, the existing tributary channels were abandoned and filled. Restoration along these reaches was either Priority 2, where the elevation of the floodplain was lowered through excavation to re-connect it to the restored stream channel, or a combination of Priority 2 and Priority 1, where the floodplain was lowered and the stream thalweg was raised above the existing channel profile.

The lower reach of Tributary A has a low gradient, which flattens to 0.0014 ft/ft. Due to a relatively flat profile gradient, a series of successive pool and riffle complexes was not proposed. Instead, the restored stream channel has constructed point bars on the inside of bends at pool locations and is transporting its bedload through the run/pool complexes as the bed form of the channel naturally evolves. The steeper gradient associated with the restored stream channels along Tributaries A2 and B allowed the construction of a sinuous channel with riffle/pool sequences.

Enhancement Level I was accomplished along one of the reaches on Tributary A by modifying the profile and dimension of the channel. Along this segment, improvements were constructed along the alignment of the existing stream channel. Enhancement Level I of Tributary C provided bank stabilization, through cattle exclusion, with one hard-engineered, fenced and controlled cattle access point for watering, combined with continuous preservation of the riparian buffer. Stabilization was accomplished by re-grading steep, undercut channel banks, and the use of jute matting and live plantings.

An important component of the restoration of Tributaries B and C is cattle exclusion. As mentioned previously, these channels are adjacent to pastureland, where cattle frequented the streams for drinking water. Prior to restoration, the cattle accessed the streams at random locations and, in doing so, denuded and destabilized the pre-existing channel banks. The restoration of Tributary B includes fencing that will permanently exclude cattle from this project reach. The fencing along Tributary C limits cattle access to a single point along the stream that is reinforced with stone underlain by non-woven fabric to prevent degradation that would otherwise occur. All fencing has been placed at the outer edge of the conservation easement.

-	Structure Table toration / EEP Project No. D04006-01
Project Segment/Reach ID	Linear Footage or Acreage
A (upper)	1,609 l.f.
A (middle)	1,094 l.f.
А	1,052 l.f.
A (lower)	7,349 l.f.
A2	480 l.f.
В	2,041 l.f.
С	1,601 l.f.
TOTAL	15,226 l.f.

Information on the project structure and objectives is included in Tables I and II as follows:

June, 2007 Monitoring Year 1 of 5 Page 5

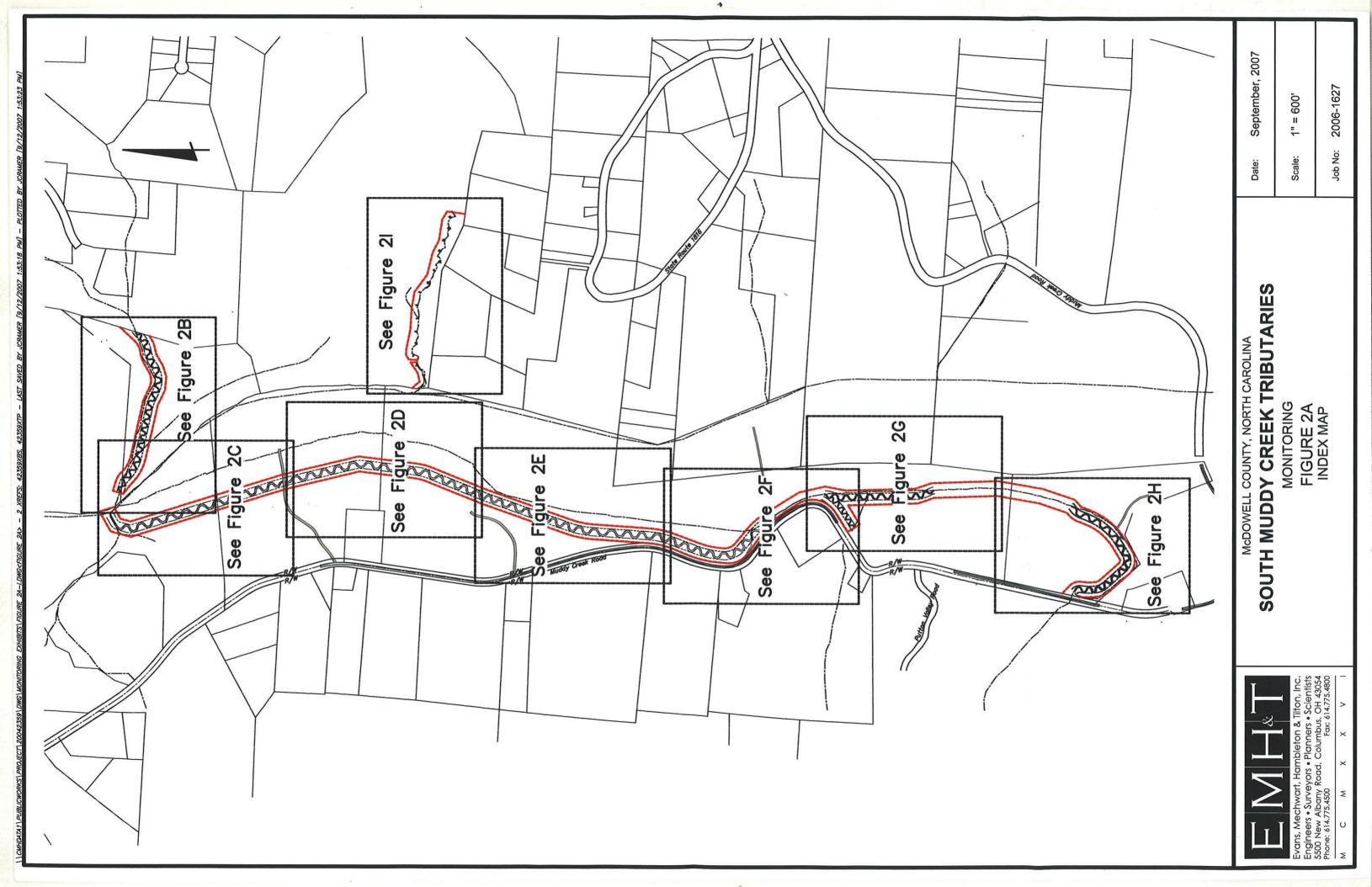
South			itigation Objecti Restoration / EEI	ves Table P Project No. D04006-01
Project Segment/ Reach ID	Mitigation Type	Approach	Linear Footage or Acreage	Comment
A (upper)	Restoration	Priority 1&2	1,609 l.f.	Restore dimension, pattern, and profile
А	Enhancement	Level 1	1,052 l.f.	Restore dimension and profile
A (middle)	Restoration	Priority 1&2	1,094 l.f.	Restore dimension, pattern, and profile
A (lower)	Restoration	Priority 2	7,349 l.f.	Restore dimension, pattern, and profile
A2	Restoration	Priority 2	480 l.f.	Restore dimension, pattern, and profile
В	Restoration	Priority 2	2,041 l.f.	Restore dimension, pattern, and profile
С	Enhancement	Level 1	1,601 l.f.	Restore dimension and pattern
	TOTAL			15,226 l.f.

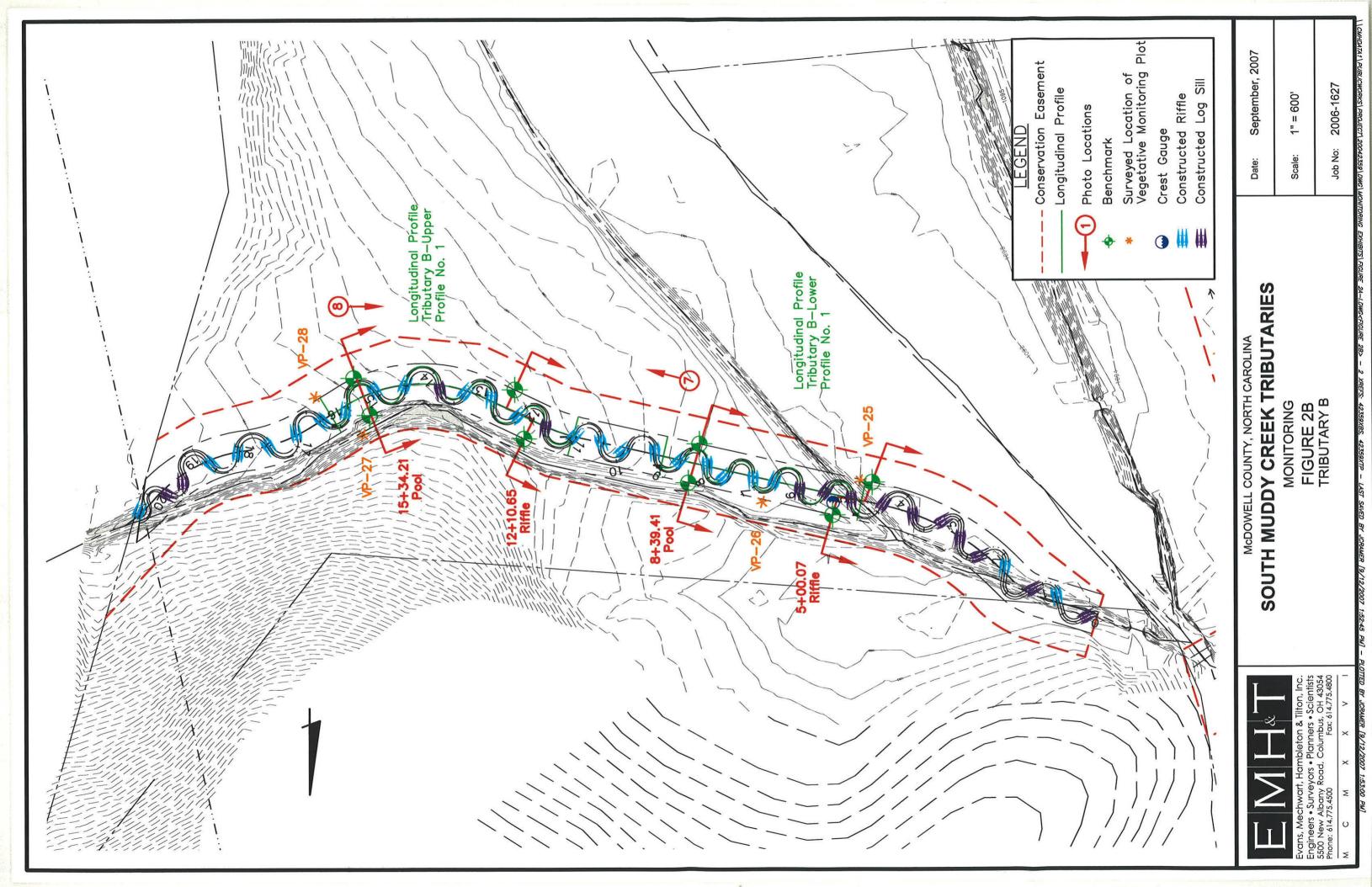
C. Project History and Background

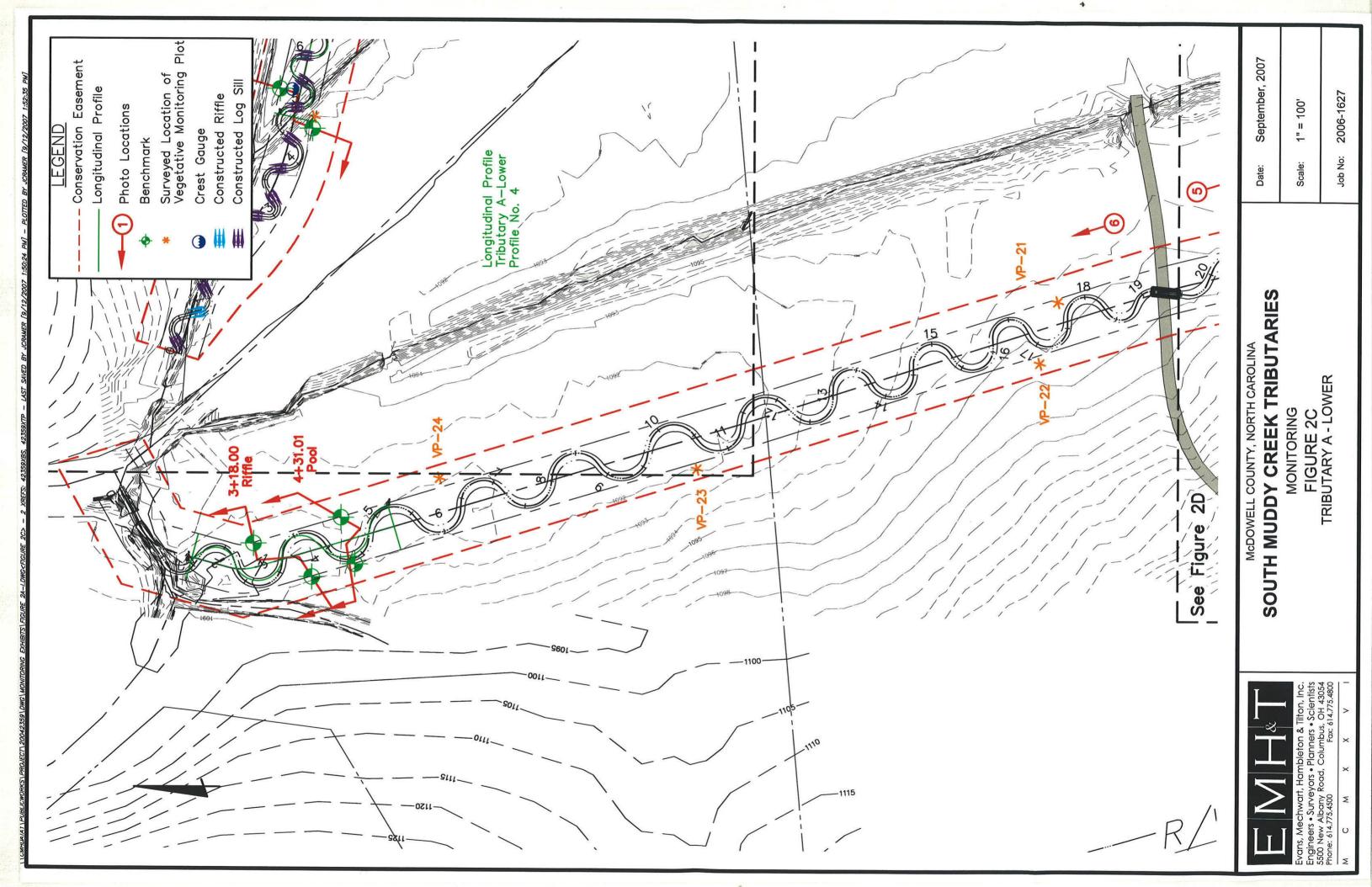
Project activity and reporting history are provided in Exhibit Table III. The project contact information is provided in Exhibit Table IV. The project background history is provided in Table V.

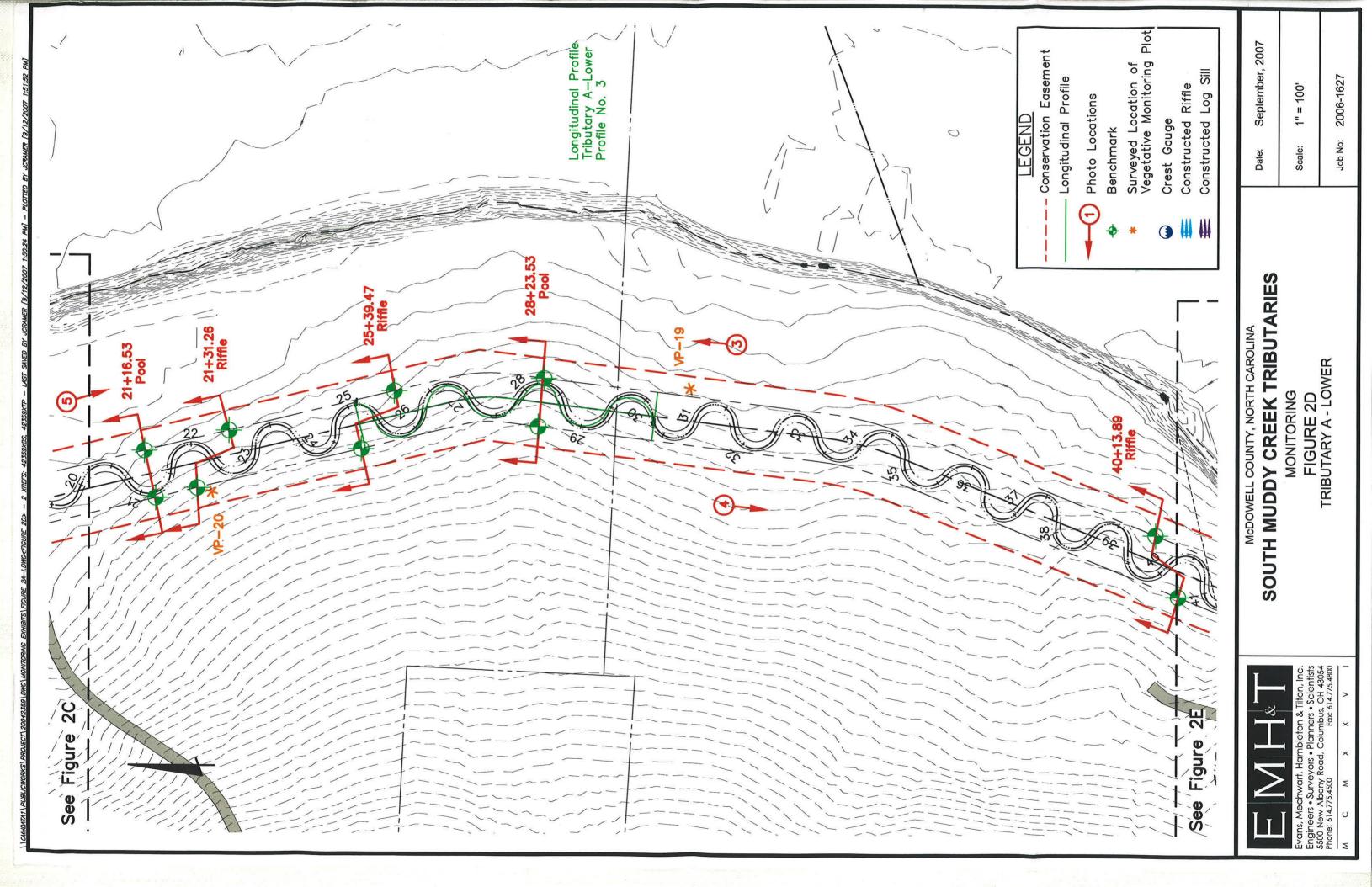
	v	vity and Reporting History estoration / EEP Project No. I	004006-01
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Restoration plan	Aug 2005	Fall 2004	Mar 2005
Final Design - 90% ¹	N/A	N/A	N/A
Construction	Feb 2006	N/A	Apr 2006
Temporary S&E applied to entire project area ²	Jul 2005	N/A	Jul 2005
Permanent plantings	Apr 2006	N/A	Apr 2006
Mitigation plan/As-built	Jun 2006	Nov 2006	Jan 2007
Year 1 monitoring	2006	Sep 2006 (vegetation) Apr 2007 (geomorphology)	Jun 2007
Year 2 monitoring	2007		
Year 3 monitoring	2008		
Year 4 monitoring	2009		
Year 5 monitoring	2010		

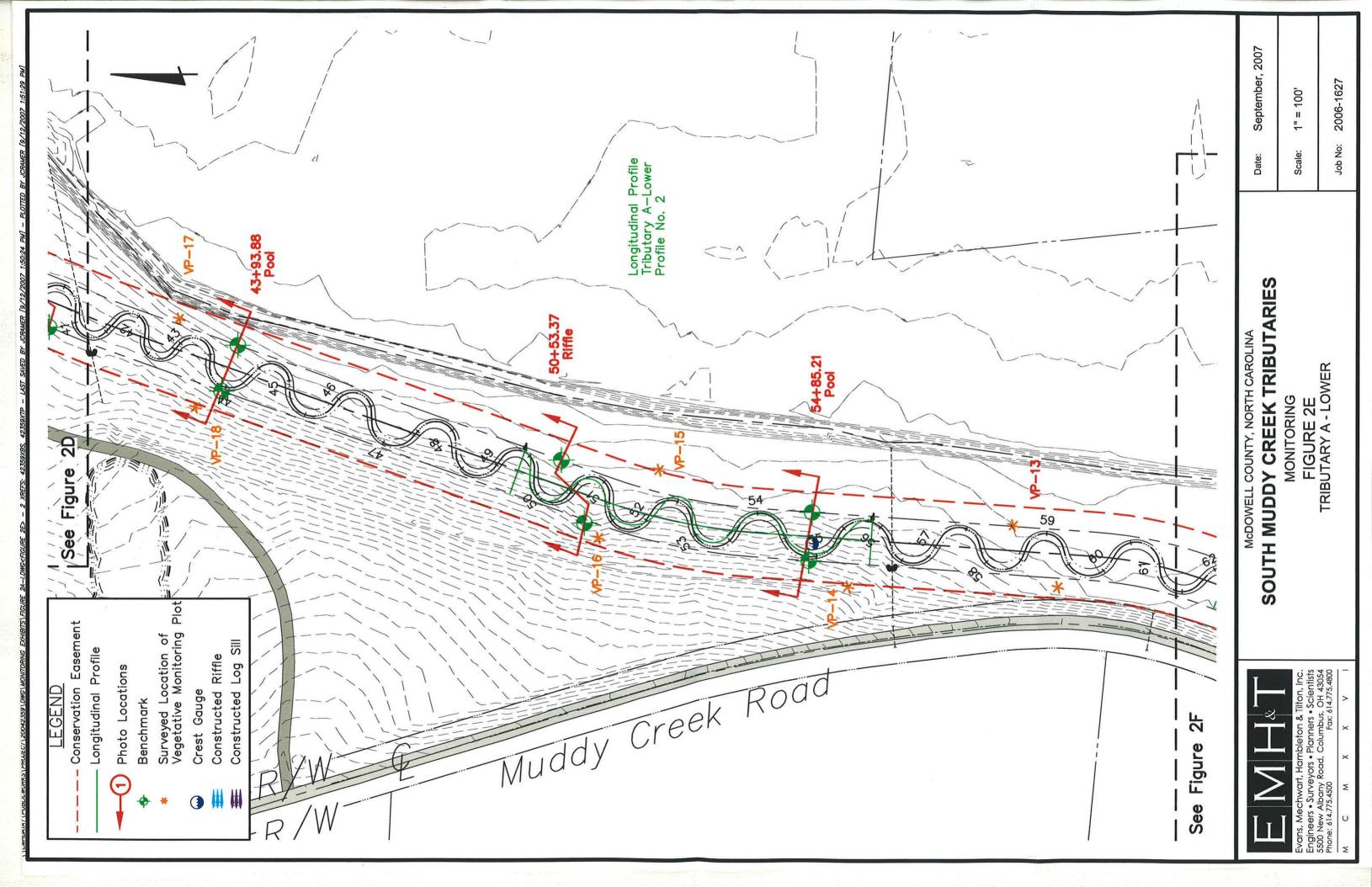
¹Full-delivery project; 90% submittal not provided.

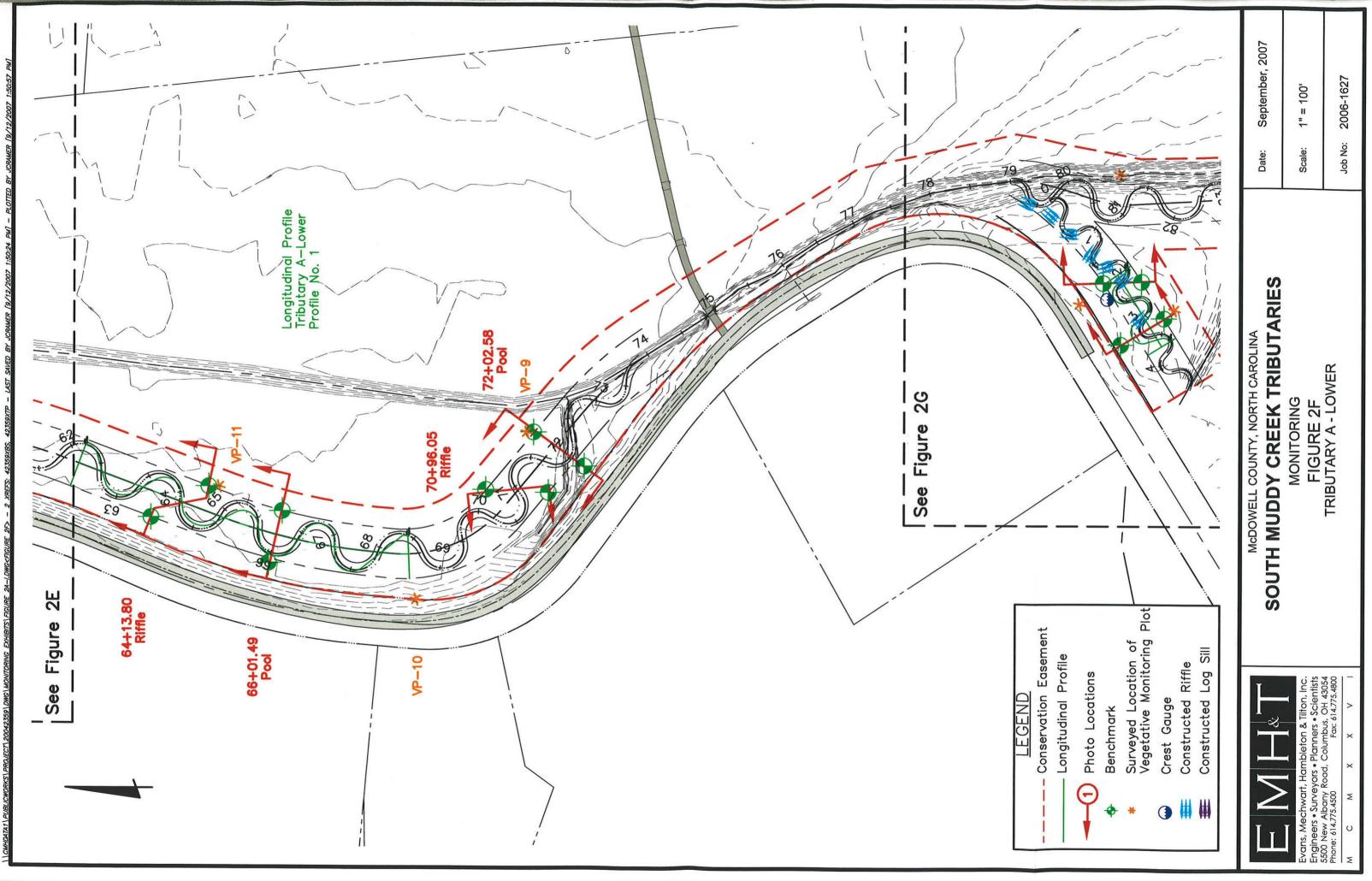

Evans, Mechwart, Hambleton & Tilton, Inc. *Monitoring Report – South Muddy Creek Tributaries EEP Contract # D04006-01*

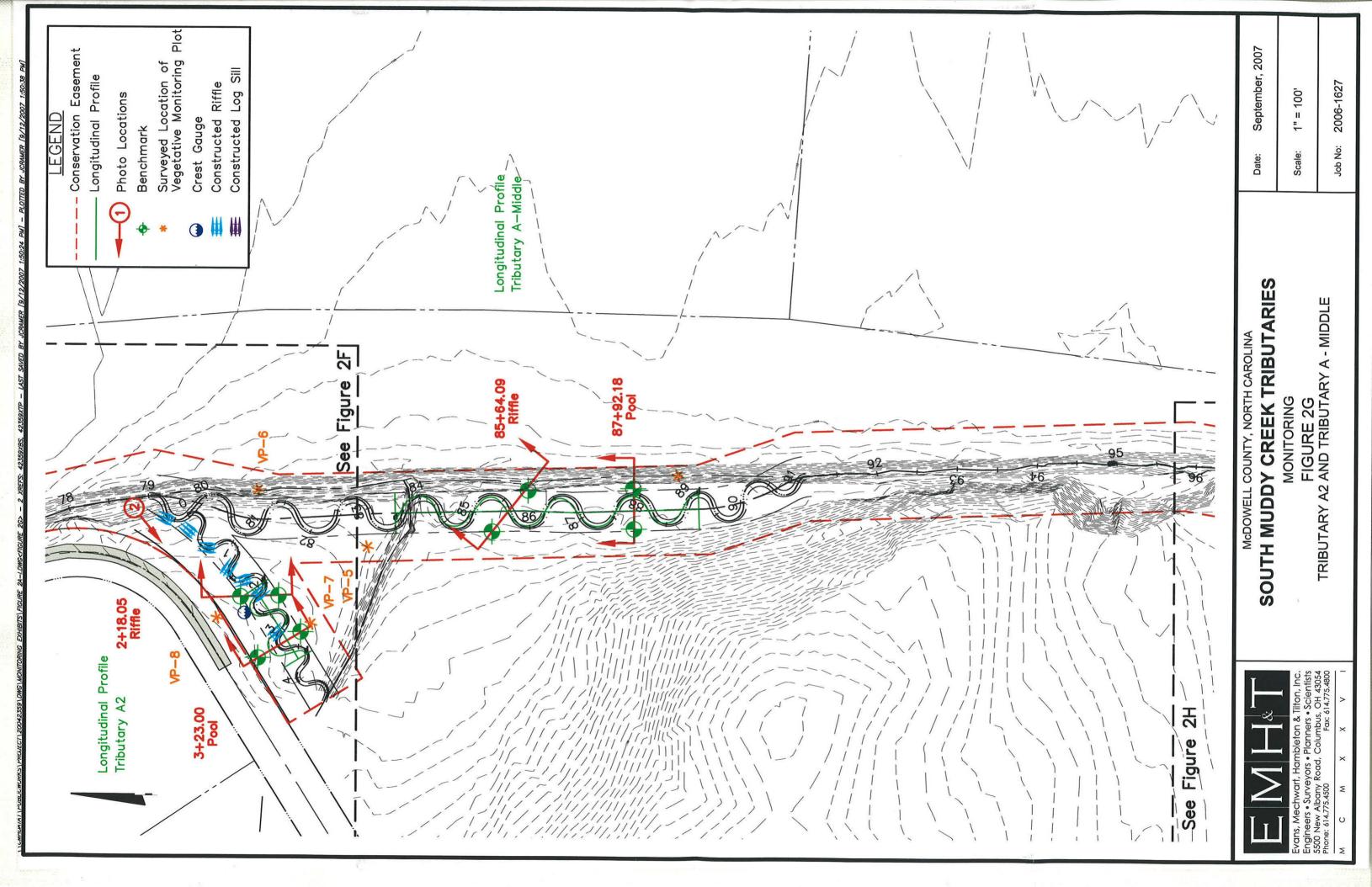

June, 2007 Monitoring Year 1 of 5 Page 6 ²Erosion and sediment control applied incrementally throughout the course of the project.

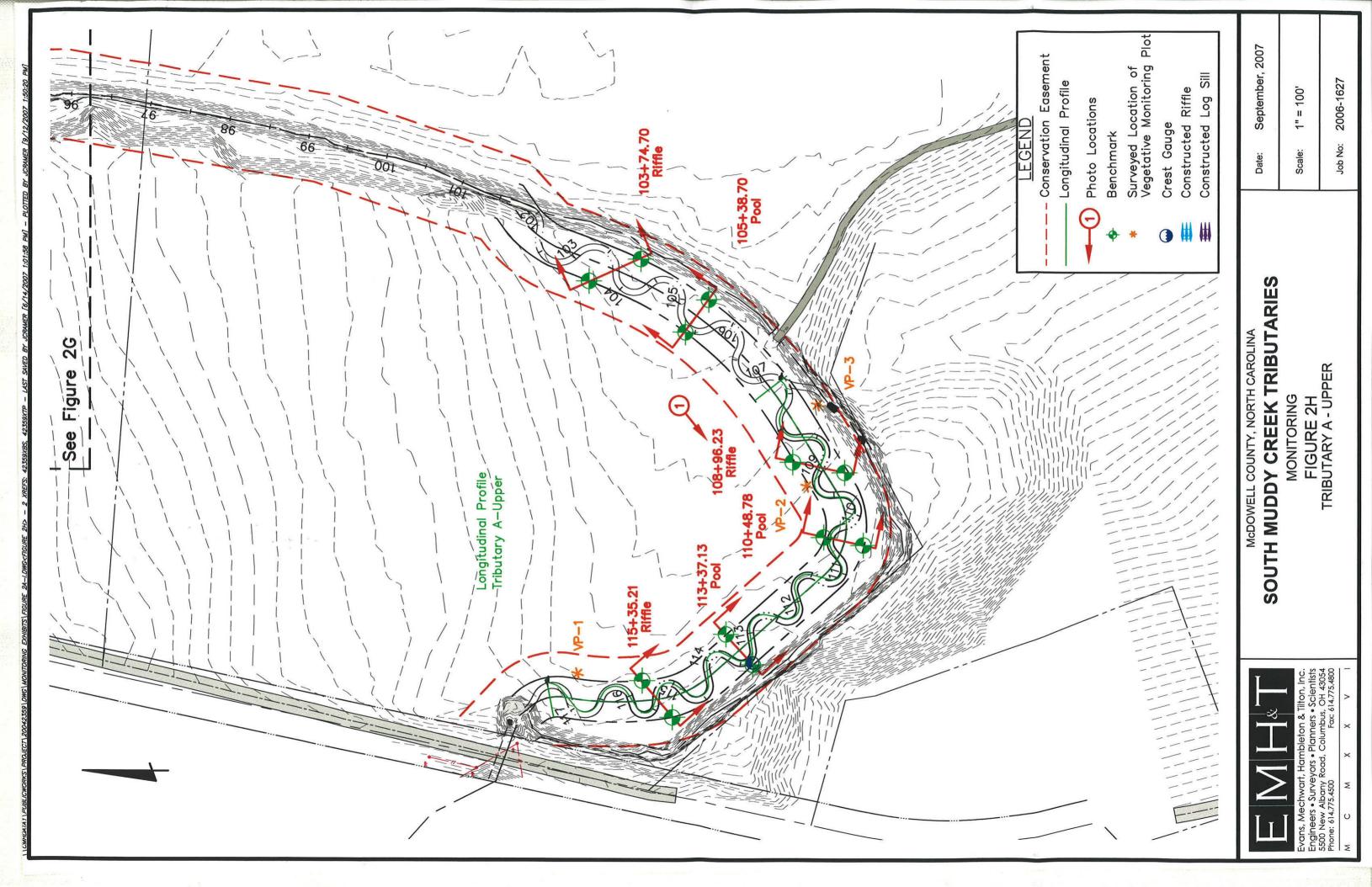

	ible IV. Project Contact Table ibutaries Restoration / EEP Project No. D04006-01
Designer	Evans, Mechwart, Hambleton & Tilton, Inc. 5500 New Albany Road, Columbus, OH 43054
Construction Contractor	South Mountain Forestry 6624 Roper Hollow, Morganton, NC 28655
Monitoring Performers	Evans, Mechwart, Hambleton & Tilton, Inc. 5500 New Albany Road, Columbus, OH 43054
Stream Monitoring POC Vegetation Monitoring POC	Warren Knotts, EMH&T Holly Blunck, EMH&T

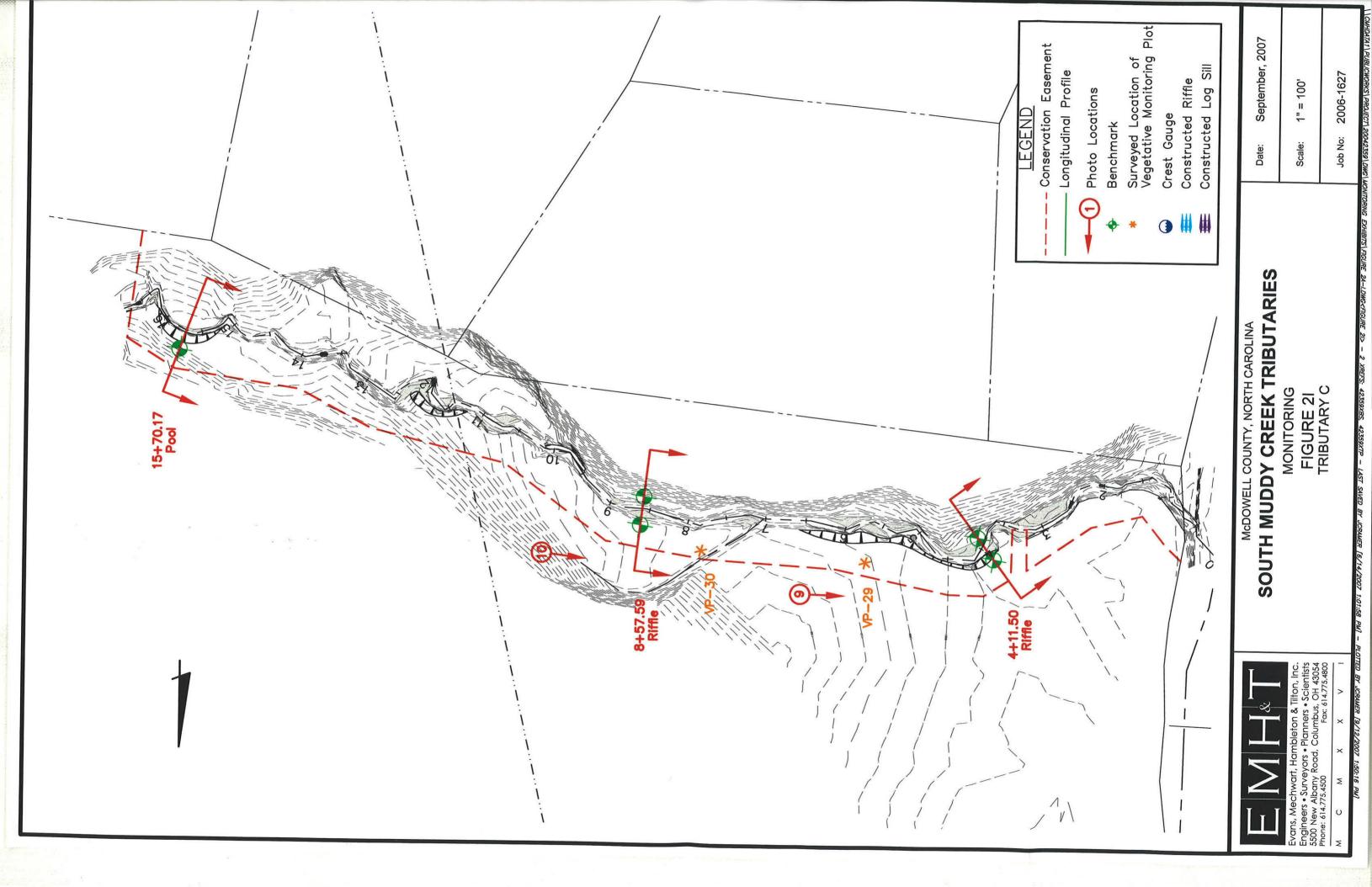

Table V. Project Backgrou South Muddy Creek Tributaries Restoration /	
Project County	McDowell
Drainage Area- A (upper & middle)	1.38 sq mi
Drainage Area-A (lower)	2.03 sq mi
Drainage Area-A2	0.27 sq mi
Drainage Area-B	0.44 sq mi
Drainage Area-C	0.37 sq mi
Drainage Impervious Cover Estimate	2%-6%
Stream Order	Tributary A -3rd Tributaries A2, B, C - 2nd
Physiographic Region	Blue Ridge Mountains
Ecoregion	Eastern Blue Ridge Foothills
Rosgen Classification of As-built	C4/C5
Dominant Soil Types	Iotla sandy loam, Dillard loam
Reference Site ID	South Muddy Birchfield, South Muddy "Tributary 4"
USGS HUC for Project and Reference	3050101
NCDWQ Sub-basin for Project and Reference	03-08-30
NCDWQ Classification for Project and Reference	С
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d listed segment?	No
Reason for 303d listing or stressor	N/A
% of project easement fenced	24%


D. Monitoring Plan View









III. PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment

1. Soil Data

The project area is contained within the Iotla-Braddock-Rosman-Potomac soil association. This soil association typically consists of nearly level to very steep, somewhat poorly drained soils, which have a predominantly loamy, clayey or sandy subsoil formed in alluvium on floodplains and stream terraces (USDA, NRCS 1995).

The majority of Tributary A is mapped within Iotla sandy loam with 0-2% slopes, occasionally flooded. The upstream portion of the tributary flows through additional soil units including Elsinboro loam with 1-4% slopes, rarely flooded, Braddock clay loam with 6-15% slopes, eroded and Hayesville-Evard complex with 15-35% slopes. Tributary A2 is mapped in Iotla sandy loam. The portion of tributary B that is included in the restoration is mapped within Dillard loam, 1-4% slopes, rarely flooded. The portion of Tributary C that is included in the restoration is mapped within the Iotla sandy loam unit.

Data on the soils series found within and near the project site is summarized in Table VI.
--

Table South Muddy Creek Tribu	VI. Prelimin taries Restora	•	roject No. D	04006-	-01
Series	Max. Depth (in.)	% Clay on Surface	K	Т	OM %
Braddock clay loam (BrC2)	80+	27-40	0.32	5	0-2
Dillard loam (DdB)	80+	10-15	0.32	5	4-8
Elsinboro loam (EsB)	60+	8-18	0.28	5	1-3
Hayesville-Evard complex (HeD)	60+	7-25	0.24-0.28	5	1-5
Iotla sandy loam (IoA)	60+	12-18	0.2	5	4-8

2. Vegetative Problem Areas

Vegetative Problem Areas are defined as areas either lacking vegetation or containing populations of exotic vegetation. There were no problem areas identified along any of the tributaries in Monitoring Year 1 to report in Table VII. There are a few locations where the density of planted woody stems is not high enough to meet the required stem counts. Densities of planted woody species are discussed in the Stem Counts section of this report.

3. Vegetation Problem Area Plan View

The location of each vegetation problem area found in future monitoring years will be shown on a vegetative problem area plan view.

4. Stem Counts

A summary of the stem count data for each species arranged by plot is shown in Table VIII. This data was compiled from the information collected on each plot using the *CVS-EEP Protocol for Recording Vegetation, Version 4.0.*

Species 1 Shrubs Almus servulato		2	OULU	South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	ddv											5		100	-000	5		ĺ					
1 <i>irulato</i>												P	Plots														Year 1
Shrubs Almus servilata	2	3 4	5	9	7	8	6	10	11	12 1	13 1.	14 15	5 16	17	18	19	20	21	22	23	24	25	26	27	28	29 3	30 Totals
Almus servulato		 						-		-																	
																:						5	8	3	7		
Cephalanthus												 															
occidentalis																											
Cornus amomum 5	5 6	6	3	5	2	3	4	3	5	5		1			e	-	2	З	2	Ŷ							-
Sambucus canadensis								4																			
Trees																											
Frazinus nenusylyanica	6	2		2		·	2			ć		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m 							7						••••
		 				1		-		'	-									\square	1	 		<u> </u>		-	
Platanus occidentalis 1		3 2	0			2	-					* *	2		1	1	1	I	1		I						
Quercus alba		2 5	-		-	1	3		1			2 4	4 2	2 1		2		6		+1	÷						
Quercus phellos	1							<u> </u>		Ţ	5						2							_			
Quercus pagoda																						m	m	m	4		
Salix nigra					5															_						_	
Year 1 Totals 10	8 13	3 7	7 10	7	8	7	10	7	6	7	7	5 8	8	4 4	1	4	5	11	Э	8	7	8	Ξ	७	11	0	-
Live Stem Density 405 324 527 284 405 284 324 284 405 284 243 284 284 203	24 52	7 284	1 405	284	324	284	405];	284 2	43 2	84 28	84 20	3 324	4 162	2 162	284	162	162 284 162 203	446	122	324	284	324	122 324 284 324 446 243 446	243 4	46	0	41
Average Live Stem																											
Density										:		. 4	284														

The average stem density for the entire site falls below the minimum criteria of 320 stems per acre after three years. Eighteen of the thirty vegetation plots fall below this threshold number. The largest deficit in woody stems is found along Tributary C (Plots 29 and 30). Only one seedling was found in these two plots. The remainder of the plots with an insufficient number of stems are scattered throughout the project area.

Remedial plantings were conducted in late April, 2007 to supplement the number of trees along the streams. Approximately 2000 trees were planted at this time, including 500 trees along Tributary C, and 1500 trees along the other reaches. The following table provides the number of additional trees planted in each plot; these trees will be included in the vegetation monitoring protocol for the Year 2 Monitoring Report.

Plot	Number of Additional Trees	Plot	Number of Additional Trees
1	3	16	0
2	3	17	4
3	3	18	0
4	4	19	3
5	0	20	0
6	5	21	2
7	4	22	3
8	2	23	5
9	3	24	3
10	3	25	3
11	4	26	3
12	5	27	2
13	5	28	2
14	0	29	Unknown
15	5	30	Unknown

These additional trees bring the average live stem density to 390 stems per acre, meeting the three year threshold of 320 stems per acre.

5. Vegetation Plot Photos

Vegetation plot photos are provided in Appendix A.

B. Stream Assessment

1. Hydrologic Criteria

A network of six (6) crest-stage stream gages installed on each of the project reaches. The locations of the crest-stage stream gages are shown on the monitoring plan view (Figure 2). No bankfull events were documented for this site during the first year of monitoring.

2. Stream Problem Areas

A summary of the areas of concern identified during the visual assessment of the stream is included in Table IX.

Sou		Cable IX. Stream Problem Areas Cributaries Restoration / EEP Project No. D04	006-01
Feature Issue	Station Numbers	Suspected Cause	Photo Number
Aggradation	4+50 (A2)	Large bar, 25 feet aggraded	SPA 1
riggradation	3+00 (A2)	Overwide channel, 40 feet aggraded	51771
Bank failure	79+50 (A Middle)	Mat failed; scour hole, 5'	SPA 2, SPA 3
Dank fandre	12+10 (B)	Complete loss of riffle, bank failure.	51 A 2, 51 A 5
	103+00 (A Upper)	Large hole, scour (15 feet)	
	83+30 (A Middle)	Sloughing, coir log undercut and fallen into pool (15 feet)	_
	82+70 (A Middle)	Sloughing, coir log undercut and fallen into pool (15 feet)	
Bank scour	3+00 (A Lower)	Sloughing	SPA 4, SPA 5,
Dunin Secur	19+70 (B)	Channel scouring around log sill	SPA 6
	18+50 (B)	Scour at outside meander bend; significant aggradation	
	16+00 (B)	Scour, matting loose and failing, bank slough	
	15+70 (C)	Bank scour/ sloughing	
	4+50 (C)	Bank scour/ sloughing	

A number of unstable areas were found along the tributaries of South Muddy, including areas of aggradation, bank failure and bank scour. Tributary A2 was the only section to have aggradation problems. The Upper and Lower sections of Tributary A only had one area of bank scour each, while Tributaries B, C and the Middle section of Tributary A each had a few areas of bank scour and/or bank erosion. The problem areas along the streams appear to be concentrated within a few hundred feet of channel length.

3. Stream Problem Areas Plan View

The location of each structural problem area is shown on the stream problem area plan view included in Appendix B.

4. Stream Problem Areas Photos

Photographs of the stream problem areas are included in Appendix B.

5. Fixed Station Photos

Photographs were taken at each established photograph station on September 19-20. These photographs are provided in Appendix B.

6. Stability Assessment Table

The visual stream assessment was performed to determine the percentage of stream features that remain in a stable state after the first year of monitoring. A summary of the assessment for each

reach is included in Table Xa through Table Xf. This summary was compiled from the more comprehensive Table B1, included in Appendix B. Only those structures included in the as-built survey were assessed during monitoring and reported in the tables.

Table Xa. Categori South Muddy Creek Tr	ributaries		ion / EEP	v		5-01
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	100%				
B. Pools	100%	100%				
C. Thalweg	100%	100%				
D. Meanders	100%	96%				
E. Bed General	100%	100%				
F. Vanes / J Hooks etc.	N/A	N/A				
G. Wads and Boulders	N/A	N/A				

Table Xb. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A(middle)										
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05				
A. Riffles	100%	100%								
B. Pools	100%	100%								
C. Thalweg	100%	100%								
D. Meanders	100%	84%								
E. Bed General	100%	100%								
F. Vanes / J Hooks etc.	N/A	N/A								
G. Wads and Boulders	N/A	N/A								

Table Xc. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A (lower)											
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05					
A. Riffles	100%	100%									
B. Pools	100%	100%									
C. Thalweg	100%	100%									
D. Meanders	100%	98%									
E. Bed General	100%	100%									
F. Vanes / J Hooks etc.	N/A	N/A									
G. Wads and Boulders	N/A	N/A									

Table Xd. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A2											
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05					
A. Riffles	100%	86%									
B. Pools	100%	100%									
C. Thalweg	100%	100%									
D. Meanders	100%	100%									
E. Bed General	100%	86%									
F. Vanes / J Hooks etc.	N/A	N/A									
G. Wads and Boulders	N/A	N/A									

Table Xe. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: B										
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05				
A. Riffles	100%	96%								
B. Pools	100%	100%								
C. Thalweg	100%	100%								
D. Meanders	100%	89%								
E. Bed General	100%	100%								
F. Vanes / J Hooks etc.	N/A	N/A								
G. Wads and Boulders	N/A	N/A								
H. Log Sills	100%	93%								

Table Xf. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: C											
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05					
A. Riffles	100%	100%									
B. Pools	100%	100%									
C. Thalweg	100%	100%									
D. Meanders	100%	94%									
E. Bed General	100%	100%									
F. Vanes / J Hooks etc.	N/A	N/A									
G. Wads and Boulders	N/A	N/A									

Those features not included in the stream restoration were labeled N/A. This includes features such as vanes, J hooks, wads and boulders. Also, the tables were completed to include a percentage of stability for pool and riffle features using the definitions provided below for the stream reaches along Tributary A.

Riffle: A portion of the linear stream segment located between two consecutive meander bends.

Pool: A portion of the curvilinear stream segment located in each meander bend.

The only categories that included any unstable features for Tributaries Upper A, Middle A, Lower A and C were meanders, which had erosion along the outer bends. The areas along Tributary A2 with unstable features were all locations of aggradation and bar formation in the riffles. The unstable features of Tributary B had erosion along meander bends and bank scouring around riffles and log sills.

7. Quantitative Measures

Graphic interpretations of cross-sections, profiles and pebble counts are provided in Appendix B. A summary of the baseline morphology for the site is included in Table XI for comparison with the monitoring data shown in the tables in the appendix.

There are a few items to note about the information in Table XI. The data provided for Year 1 only reflects data from the reaches assessed in the Year 1 longitudinal profiles, while the As-Built data was collected for the entire reach of each tributary. The stream pattern data provided for Year 1 is the same as the data provided from the As-Built surveys, as it was determined that pattern had not changed significantly, and was therefore not resurveyed in the field. Also, the substrate information presented in Table XI was collected in September 2006 when the vegetation surveys were completed.

IV. METHODOLOGY

Vegetation monitoring was conducted in September 2006 using the *CVS-EEP Protocol for Recording Vegetation, Version 4.0* (Lee, M.T., Peet, RK., Roberts, S.R., Wentworth, T.R. 2006). Stream monitoring was conducted in April 2007 to provide adequate time between the as-built survey (accepted in January 2007) and the Year 1 monitoring survey. Stream monitoring for Year 2 will occur in the fall of 2007, to provide six months between the Year 1 and Year 2 surveys. Subsequent stream monitoring will occur in the fall of Years 3, 4 and 5 to provide a full year between surveys. Vegetation monitoring will continue to be conducted in the fall of each subsequent year of monitoring, providing a full year between vegetative surveys.

South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Upper Tributary A {Long-Term Monitoring Profile Station 0+00 to 9+26.47 (926.47 feet)} Reference Reach Data¹ XS 114+61.61, -35.13 Parameter S. Muddy Birchfield² S. Muddy Trib 4² **Pre-Existing** Design As-Built³ Dimension Min Max Med Min Drainage Area - mi.2 1.3 0.14 1.38 1.38 1.38 Bankfull Width (Wbkf) - ft. 10.8 7.35 6.55 12.50 7.60 11.00 14.00 11.00 Flood Prone Width (Wfpa) - ft. 100 43 9.12 50.00 50 Bankfull Cross-Section Area (Abkf) - ft.2 20.7 9.1 5.91 10.44 8.86 10.55 12.24 8.86 Bankfull Mean Depth (Dbkf) - ft. 1.9 1.3 0.90 0.63 1.80 1.11 0.87 0.63 Bankfull Max Depth (Dmax) - ft. 2.5 1.8 1.78 1.28 1.66 1.47 1.28 Width/Depth Ratio 5.6 6.1 7.28 4.22 9.91 22.22 16.07 9.91 Entrenchment Ratio (Wfpa/Wbkf) 9.3 3 1.39 6.58 3.57 4.55 4.06 3.57 Bank Height Ratio 1.0 1.8 3.59 1.00 1.11 Wetted Perimeter - ft. 14.6 9.95 8.35 9.09 12.00 14.38 13.19 12.00 Hydraulic radius - ft. 1.42 0.91 0.71 1.02 0.82 0.62 1.15 0.62 Pattern Belt Width (Wblt) - ft. 50 46.38 64.9 50 Radius of Curvature (Rc) - ft. 10 19.00 10.67 24.71 16.26 10.67 Meander Length (Lm) - ft. 50 106.4 76 60 107 78.5 60 Meander Width Ratio (Wblt/Wbkf) 6.8 6.58 4.00 Profile Min Run Length (Lrif) - ft, 16 10 23.8 130.3 53.3 23.8 Min Run Slope (Srif) - ft./ft. 0.026 0.032 0.0026 0.0069 0.0048 0.0026 Pool Length (Lpool) - ft. 9 24 26.8 96.8 46.8 26.8 40 Pool-Pool Spacing (p-p) - ft. 27 159.9 128.7 85.3 85.3 Substrate d₅₀ (mm) 20 26 20 3.4 d₈₄ (mm) 38 76 38 12.5 Additional Reach Parameters Valley Length (ft) 295 2520 1049 1097 Channel Length (ft) 236 479 2644 1539 1609 Sinuosity 1.6 1.05 1.47 1.47 Water Surface Slope (Save) 0.022 0.006 0.0035 0.0030 0.0023 Bankfull Slope (Sval) NA 0.025 0.0044 0.0033 Rosgen Classification E4 E4 F/G E4 C5 Bankfull mean velocity (Vbkf) 4.7 6.9 2.77 1.98 1.98 Bankfull Discharge (Qbkf) 98 60 26.00 20.7 20.7 Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with ² S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

Exhibit Table XI. Baseline Morphology and Hydraulic Summary

³As-Built dimension data includes all run and/or riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

where only one measurement was taken, that is listed as a 'Med' value.

Blank fields indicate either no measurement was taken or data were not available at the time of this report.

Aonitoring Year 1 ⁴	<u></u>
Max	Med
	1.38
14.00	-
	50
12.24	
1.11	
1.66	
22.22	
4.55	
	1.11
14.38	·
1.02	
	50
24.71	16.26
107	78.5
**.	4.00
130.3	53.3
0.0069	0.0048
96.8	46.8
159.9	40.8 128.7
	3.4
	12.5
	660.04
	926.47
	1.40
	0.0023
<u></u>	0.0023
	0.0033 C5
v	1.98
	20.7
- B fad	
th no 'Med	' value;
time of thi	s report.

Reference Reach Data¹ XS 114+61.61, -35.13 S. Muddy Birchfield² S. Muddy Trib 4² **Pre-Existing** As-Built³ Parameter Design Min Max Med Min Max Med Min Max Međ Min Max Med Min Max Med Min Dimension 0.14 1.38 1.38 Drainage Area - mi. 1.3 1.38 10.8 7.35 6.55 8.00 15.00 Bankfull Width (Wbkf) - ft Flood Prone Width (Wfpa) - ft 100 43 9.12 50.00 60.00 9.1 Bankfull Cross-Section Area (Abkf) - ft.² 20.7 5.91 12.00 12.61 1.9 1.3 0.90 2.00 0.84 Bankfull Mean Depth (Dbkf) - ft Bankfull Max Depth (Dmax) - f 2.5 1.8 1.50 1.78 5.6 6.1 17.86 7.28 4.00 Width/Depth Ratio 9.3 3 1.39 6.25 4.00 Entrenchment Ratio (Wfpa/Wbkf) 1.8 3.59 Bank Height Ratio 1.0 1.00 1.11 14.6 9.95 8.35 15.49 Wetted Perimeter - f 9.66 0.81 1.42 0.91 0.71 1.24 Hydraulic radius - ft Pattern Belt Width (Wblt) - ft 50 48.80 68.32 50.00 Radius of Curvature (Rc) - ft 10 20.00 15.04 41.80 20.62 15.04 Meander Length (Lm) - ft 50 80.00 112.00 75.00 91.00 85.00 75.00 Meander Width Ratio (Wblt/Wbkf 6.8 6.25 3.33 Profile Min Run Length (Lrif) - ft 16 10 36.5 72.5 52.3 36.5 0.0032 0.0026 0.026 0.032 0.0012 0.001 Min Run Slope (Srif) - ft./ft. Pool Length (Lpool) - ft. 9 24 18.4 42.5 34.1 18.4 40 27 49.8 83.6 66.5 49.8 Pool-Pool Spacing (p-p) - ft. Substrate 20 26 20 0.23 d₅₀ (mm d₈₄ (mm 38 0.41 38 76 Additional Reach Parameters Valley Length (ft) 295 816 816 816 236 479 824 1203 1094 Channel Length (ft) 1.47 1.34 Sinuosity 1.6 1.01 0.022 0.002 0.0017 Water Surface Slope (Save) 0.006 0.0035 NA 0.025 0.003 0.0020 Bankfull Slope (Sval) E4 E4 F/G Е C5 Rosgen Classification 4.7 6.9 2.77 1.71 1.98 Bankfull mean velocity (Vbkf) 98 20.5 20.7 Bankfull Discharge (Qbkf) 60 26.00

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

² S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes all run and/or riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' value

where only one measurement was taken, that is listed as a 'Med' value.

Blank fields indicate either no measurement was taken or data were not available

Exhibit Table XI. Baseline Morphology and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Middle Tributary A {Long-Term Monitoring Profile Station 0+00 to 5+17.09 (517.09 feet)}

		1
1	Monitoring	
	Year I	
	Max	Med
		1.38
		15.00
		60.00
		12.61
		0.84
		1.50
		17.86
		4.00
		1.11
		15.49
		0.81
		50.00
4	41.80	20.62
0	91.00	85.00
		3.33
, 	72.5	52.3
2	0.0032	0.0026
Ļ	42.5	34.1
}	83.6	66.5
		0.23
	· ·	0.41
	1	
		375.94
		517.09
		1.38
	· · · · · · · · · · · · · · · · · · ·	0.0017
		0.0020
		C5
		1.98
	·	20.7
ies v	with no 'Me	a value;
		•
at tl	ne time of the	nis report.

Exhibit Table XI Reseline Morphology and Hydraulie Si

			Reference]	Reach Data	1		XS	3+61.77, -2	16.17							1	Maritania	
Parameter	S. M	uddy Birch			Muddy Tri	b 4 ²		Pre-Existin			Design			As-Built ³			Monitorin Year 1 ⁴	g
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi. ²			1.3	Î		0.14		1	0.27			0.27	AVAII1	Iviax	0.27	IVIIII	IVIAX	0.27
Bankfull Width (Wbkf) - ft.			10.8			7.35		<u> </u>	7.09			5.00			11.65		<u> </u>	
Flood Prone Width (Wfpa) - ft.			100		1	43			11.19			30.00			30			11.6
Bankfull Cross-Section Area (Abkf) - ft. ²			20.7		<u> </u>	9.1		-	4.29			2.40	i		7.63		<u> </u>	30
Bankfull Mean Depth (Dbkf) - ft.			1.9			1.3			0.60			2.40			0.66		<u> </u>	7.63
Bankfull Max Depth (Dmax) - ft.			2.5			1.8			1.12			2.00			1.41			0.66
Width/Depth Ratio			5.6	· · · ·		6.1		<u> </u>	11.82			3.85			17.65			1.41
Entrenchment Ratio (Wfpa/Wbkf)			9.3			3			1.58			6.00			9.44			17.6
Bank Height Ratio			1.0	· · · · ·		1.8			5.85			1.00			1.26			9.44
Wetted Perimeter - ft.			14.6		-	9.95		<u> </u>	7.52			6.08	·······		12.04			1.26
Hydraulic radius - ft.			1.42			0.91			0.57	-		0.79			0.63			12.0
Pattern									<u> </u>			1 0.75		<u> </u>	1 0.05			0.03
Belt Width (Wblt) - ft.		44 H				50				30.5	42.7				10.00		1	
Radius of Curvature (Rc) - ft.						10				50.5	12.1	12.5	8.19	14.26	40.00	0.10	14.26	40.0
Meander Length (Lm) - ft.						50				50	70	12.5	47.00	57.00	12.00 51.00	8.19	14.26	12.0
Meander Width Ratio (Wblt/Wbkf)						6.8					70	6.00	47.00	37.00	3.43	47.00	57.00	51.0
Profile												1 0.00			<u> </u>			3.43
Min Riffle Length (Lrif) - ft.	T		16			10		Ι					8.30	11.20	9.80	8.30	11.20	9.80
Min Riffle Slope (Srif) - ft./ft.			0.026			0.032							0.0534	0.0718	0.0626	0.0534	0.0718	1
Pool Length (Lpool) - ft.			9			24							31.90	47.10	39.50	31.90	47.10	0.062
Pool-Pool Spacing (p-p) - ft.			40			27			:				55.50	79.40	67.60	55.50	79.40	39.5 67.6
Substrate								1	<u> </u>				33.30			55.50	/7.40	
d ₅₀ (mm)			20			26						26			T			I
d ₈₄ (mm)			38			76						76					<u> </u>	<u> </u>
Additional Reach Parameters								<u>I</u>							<u> </u>			
Valley Length (ft)						295			310			334			334			102.4
Channel Length (ft)			236			479			325			462			480			102.4
Sinuosity						1.6			1.05			1.38			1.44			196.0
Water Surface Slope (Save)			0.006			0.022			0.0156			0.0206			0.01025			1.9
Bankfull Slope (Sval)			NA	·		0.025			0.0100			0.0200						0.001
Rosgen Classification			E4			E4			F/G	·		0.0284 E4			0.01035 C4			0.002
Bankfull mean velocity (Vbkf)			4.7		· · · ·	6.9			4.46			3.87			1			C4
Bankfull Discharge (Qbkf)	_		98			60			18.4			<u> </u>			3.87 18.4		<u> </u>	3.87

÷ .

.

		1	Reference F		1		YS	5 1+66.16, -4	1.60								Monitoring	
Parameter	S. Mı	uddy Birch			Muddy Trit	4 ²	Pre-Existing Design							As-Built ³		Year 1 ⁴		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi. ²			1.3			0.14			2.03			2.03			2.03			2.03
Bankfull Width (Wbkf) - ft.			10.8			7.35		1	6.59			10.00	13.00	23.00	16.00			13.00
Flood Prone Width (Wfpa) - ft.			100			43			10.41			60.00			60.00			60.00
Bankfull Cross-Section Area (Abkf) - ft. ²			20.7			9.1			4.89		-	20.16	7.10	19.87	13.29			7.10
Bankfull Mean Depth (Dbkf) - ft.			1.9			1.3			0.74			2.80	0.55	1.16	0.83			0.55
Bankfull Max Depth (Dmax) - ft.			2.5			1.8			1.39				1.00	2.09	1.62			1.00
Width/Depth Ratio			5.6			6.1			8.91			4.00	14.79	31.08	19.28			23.64
Entrenchment Ratio (Wfpa/Wbkf)			9.3			3			1.58			6.00	2.61	7.98	16.76			4.62
Bank Height Ratio			1.0			1.8		1	5.85	-		1.00			1.28			1.28
Wetted Perimeter - ft.			14.6			9.95			7.34			12.32	13.28	23.59	16.76			13.28
Hydraulic radius - ft.			1.42			0.91			0.67			1.64	0.53	1.12	0.81	-		0.53
Pattern											ing in livity							
Belt Width (Wblt) - ft.						50				61.00	85.40				60.00		· .	60.00
Radius of Curvature (Rc) - ft.						10						25.00	15.22	39.94	24.86	16.70	26.55	21.70
Meander Length (Lm) - ft.						50				100.00	140.00		90.00	145.00	107.00	90.00	145.00	107.00
Meander Width Ratio (Wblt/Wbkf)						6.8						6.00	2.37	4.62	3.75			4.62
Profile																		
Min Run Length (Lrif) - ft.			16			10	1									124.10	138.10	131.10
Min Run Slope (Srif) - ft./ft.			0.026			0.032										0.00281	0.00283	0.00282
Pool Length (Lpool) - ft.			9			24										3.78	101.40	58.60
Pool-Pool Spacing (p-p) - ft.			40			27										72.70	[18.70	99.70
Substrate																		
d ₅₀ (mm)			20			26									0.13			0.13
d ₈₄ (mm)			38			76									0.29	-		0.29
Additional Reach Parameters																		
Valley Length (ft)						295			5710			5164			5178			419.5
Channel Length (ft)			236			479			5948			7391			7349			588.16
Sinuosity	-					1.6			1.04			1.43			1.42			1.4
Water Surface Slope (Save)			0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			0.0012
Bankfull Slope (Sval)			NA			0.025						0.0020	0.0007	0.00099	0.00084			0.0009
Rosgen Classification			E4			E4			F/G			E			C5			C5
Bankfull mean velocity (Vbkf			4.7			6.9			2.47			1.65			1.65			1.65
Bankfull Discharge (Qbkf)			98			60			40.7			20.70			20.70			20.7
Data provided by Natural Systems Engineerin	ig (NSE) an	d used in th	he Restorati	on Plan for	S. Muddy 7	Tribut aries			Note: Whe	ere only two	measurem	ents were ta	ken, they a	re listed as	Min' and 'M	fax' values	with no 'Me	d' value;
S Muddy Birchfield Ref for Trib A; S. Muddy					-					•		nt was taken						,

Exhibit Table XI. Baseline Morphology and Hydraulic Summary

		I	Reference F	Reach Data	1		XS 1+66.16, -4.60							<u></u>				= n
Parameter	S. Mi				S. Muddy Trib 4 ²			Pre-Existing			Design		As-Built ³				Year 1 ⁴	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	-
Drainage Area - mi. ²			1.3			0.14			2.03			2.03			2.03	-		Ξ
Bankfull Width (Wbkf) - ft.			10.8			7.35			6.59			10.00	13.00	23.00	16.00			-
Flood Prone Width (Wfpa) - ft.			100		Í	43			10.41			60.00			60			
Bankfull Cross-Section Area (Abkf) - ft. ²			20.7			9.1			4.89			20.16	7.10	19.87	13.29			
Bankfull Mean Depth (Dbkf) - ft.			1.9			1.3			0.74			2.80	0,55	1.16	0.83			
Bankfull Max Depth (Dmax) - ft.			2.5			1.8			1.39				1.00	2.09	1.62			
Width/Depth Ratio			5.6			6.1			8.91			4.00	14.79	31.08	19.28			
Entrenchment Ratio (Wfpa/Wbkf)			9.3			3			1.58			6.00	2.61	7.98	16.76			_
Bank Height Ratio			1.0			1.8			5.85			1.00			1.28			-
Wetted Perimeter - ft.			14.6			9.95			7.34			12.32	13.28	23.59	16.76			
Hydraulic radius - ft.			1.42			0.91			0.67			1.64	0.53	1.12	0.81			
Pattern																		
Belt Width (Wblt) - ft.						50				61.00	85.40				60			
Radius of Curvature (Rc) - ft.						10						25.00	15.22	39.94	24.86	15.22	39.94	
Meander Length (Lm) - ft.						50				100.00	140.00		90	145	107	90	145	
Meander Width Ratio (Wblt/Wbkf)						6.8						6.00	2.37	4.62	3.75			
Profile ³																		
Min Run Length (Lrif) - ft.			16			10										65,60	78,70	
Min Run Slope (Srif) - ft./ft.		-	0.026			0.032									:	0.00228	0.00344	ł
Pool Length (Lpool) - ft.			9			24										41.90	56.40	
Pool-Pool Spacing (p-p) - ft.			40			27										66.20	124.30	
Substrate ³																		
d ₅₀ (mm)			20			26		:							0.13			
d ₈₄ (mm)			38			76				-					0.29			
Additional Reach Parameters ³																		
Valley Length (ft)						295			5710			5164			5178			
Channel Length (ft)			236			479			5948			7391			7349			
Sinuosity						1.6			1.04			1.43			1.42			
Water Surface Slope (Save)			0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			
Bankfull Slope (Sval)		1	NA			0.025						0.0020	0.0007	0.00099	0.00084			
Rosgen Classification			E4			E4			F/G			E			C5			
Bankfull mean velocity (Vbkf)			4.7			6.9			2.47			1.65			1.65			
Bankfull Discharge (Qbkf)			98			60			40.7			20.70			20.70			

		Sta	ation/Reach	: Lower T	ributary A	{Long-Ter	m Monito	ing Profile	e No. 3 Stat	ion 0+00 to	5+18.94 (5	518.94 feet)	}			
			Reference F	leach Data	1		XS	1+66.16, -	4.60	<u> </u>						
Parameter	S. M	uddy Birchi			Muddy Trit	4^{2}		Pre-Existin			Design			As-Built ³		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min
Drainage Area - mi. ²			1.3			0.14			2.03			2.03			2.03	
Bankfull Width (Wbkf) - ft.			10.8			7.35			6.59			10.00	13.00	23.00	16.00	
Flood Prone Width (Wfpa) - ft.			100			43			10.41			60.00			60.00	
Bankfull Cross-Section Area (Abkf) - ft. ²			20.7			9.1			4.89			20.16	7.10	19.87	13.29	
Bankfull Mean Depth (Dbkf) - ft.			1.9			1.3			0.74			2.80	0,55	1.16	0.83	
Bankfull Max Depth (Dmax) - ft.			2.5			1.8			1.39				1.00	2.09	1.62	
Width/Depth Ratio			5.6			6.1			8.91			4.00	14.79	31.08	19.28	
Entrenchment Ratio (Wfpa/Wbkf)			9.3			3			1.58			6.00	2.61	7.98	16.76	
Bank Height Ratio			1.0			1.8			5.85	· · ·		1.00			1.28	
Wetted Perimeter - ft.	1		14.6			9.95			7.34			12.32	13.28	23.59	16.76	
Hydraulic radius - ft.		1	1.42			0.91			0.67			1.64	0,53	1.12	0.81	
Pattern		·		ĺ												
Belt Width (Wblt) - ft.						50	I	[61.00	85.40				60	
Radius of Curvature (Rc) - ft.	1				1	10		1.				25.00	15.22	39.94	24.86	19.56
Meander Length (Lm) - ft.						50				100.00	140.00		90	145	107	90
Meander Width Ratio (Wblt/Wbkf)						6.8						6.00	2.37	4.62	3.75	
Profile ³																Í
Min Run Length (Lrif) - ft.			16			10							[[77.50
Min Run Slope (Srif) - ft./ft.			0.026			0.032										0.00195
Pool Length (Lpool) - ft.			9			24							1			37.90
Pool-Pool Spacing (p-p) - ft.			40			27										101.80
Substrate ³																
d ₅₀ (mm)			20			26			1						0.13	
d ₈₄ (mm)			38			76			· .						0.29	
Additional Reach Parameters ³																
Valley Length (ft)				1		295	1	1	5710	Γ		5164			5178	[
Channel Length (ft)			236			479			5948			7391			7349	
Sinuosity	r					· 1.6			1.04			1.43			1.42	
Water Surface Slope (Save)			0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012	
Bankfull Slope (Sval)			NA			0.025				-		0.0020	0.0007	0.00099	0.00084	
Rosgen Classification			E4			E4			F/G			Е			C5	
Bankfull mean velocity (Vbkf)			4.7			6.9			2.47			1.65			1.65	·
Bankfull Discharge (Qbkf)			98			60			40.7			20.70			20.70	

¹Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes all run and/or riffle cross-sections in a described reach.

⁴ Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values

where only one measurement was taken, that is listed as a 'Med' value.

Blank fields indicate either no measurement was taken or data were not available at

Exhibit Table XI. Baseline Morphology and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Lower Tributary A {Long-Term Monitoring Profile No. 3 Station 0+00 to 5+18.94 (518.94 feet)}

	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Ï	Monitoring	
	Year 1 ⁴	·
	Max	Med
	<u>.</u>	2.03
		18.00
		60.00
		14.39
<i>.</i> .		0.80
		1.62
		22.50
1		3.33
		1.28
-		
-		18.70 0.77
		0.77
	[- <u> </u>
_		60.00
_	32.82	29.53
	145	107
		3.33
	132.00	104.70
5	0.00289	0.00242
	63.70	53.40
)	106.70	104.30
<u></u>		0.13
		0.29
		·
		369.80
		518.94
		1.40
		0.0012
		0.0012
		0.00099 C5
		1.65
		20.70
es v	with no 'Me	d' value;
it tl	he time of t	his report.

	Reference Reach Data ¹						XS 1+66.16, -4.60							Monitoring Year 1 ⁴				
Parameter	S. Muddy Birchfield ²			S. Muddy Trib 4 ²			Pre-Existing			Design			As-Built ³					
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi. ²			1.3			0.14			2.03			2.03			2.03			2.03
Bankfull Width (Wbkf) - ft.			10.8			7.35			6.59			10.00	13.00	23.00	16.00			16.00
Flood Prone Width (Wfpa) - ft.			100			43			10.41			60.00			60.00			60.00
Bankfull Cross-Section Area (Abkf) - ft. ²			20.7			9.1			4.89			20.16	7.10	19.87	13.29			13.29
Bankfull Mean Depth (Dbkf) - ft.			1.9			1.3			0.74			2.80	0.55	1.16	0.83			0.83
Bankfull Max Depth (Dmax) - ft.			2.5			1.8			1.39				1.00	2.09	1.62			1.80
Width/Depth Ratio			5.6			6.1			8.91	-		4.00	14.79	31.08	19.28			19.28
Entrenchment Ratio (Wfpa/Wbkf)			9.3			3			1.58			6.00	2.61	7.98	16.76			3.75
Bank Height Ratio			1.0			1.8			5.85			1.00			1.28			1.28
Wetted Perimeter - ft.			14.6			9.95			7.34			12.32	13.28	23.59	16.76			16.76
Hydraulic radius - ft.			1.42			0.91			0.67			1.64	0.53	1.12	0.81			0.79
Pattern																		
Belt Width (Wblt) - ft.						50				61.00	85.40				60			60
Radius of Curvature (Rc) - ft.						10			· · · · ·			25.00	15.22	39.94	24.86	24.54	33.26	30.15
Meander Length (Lm) - ft.						50				100.00	140.00		90	145	107	90	145	107
Meander Width Ratio (Wblt/Wbkf)						6.8						6.00	2.37	4.62	3.75			3.75
Profile																		
Min Run Length (Lrif) - ft.			16			10										80.40	89.30	84.80
Min Run Slope (Srif) - ft./ft.			0.026			0.032										0.00224	0.00310	0.0026
Pool Length (Lpool) - ft.			9			24												214.1
Pool-Pool Spacing (p-p) - ft.			40			27										28.60	34.40	
Substrate																		
d ₅₀ (mm)			20	-		26			· ·						0.04			0.04
d ₈₄ (mm)			38			76									0.07			0.07
Additional Reach Parameters																		
Valley Length (ft)						295		• .	5710			5164			5178			259.0
Channel Length (ft)			236			479			.5948			7391			7349			346.1
Sinuosity						1.6			1.04			1.43			1.42			1.34
Water Surface Slope (Save)			0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			0.001
Bankfull Slope (Sval)			NA			0.025			· ·			0.0020	0.0007	0.00099	0.00084			0.000
Rosgen Classification			E4			E4			F/G			E			C5			C5
Bankfull mean velocity (Vbkf)			4.7			6.9			2.47			1.65			1.65			1.65
Bankfull Discharge (Qbkf)		1	98	1		60	1	1	40.7	1	1	20.70	1	1	20.70	1	1	20.7

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

		J	Reference F	Reach Data	1		XSI	2+28.00, -	35.88							
Parameter	S. M	luddy Birch	field ²	S . 1	Muddy Tril	04 ²	J	Pre-Existin	g		Design			As-Built ³		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min
Drainage Area - mi. ²			1.3			0.14			0.44			0.44			0.44	
Bankfull Width (Wbkf) - ft.			10.8			7.35			7.83			6.20	5.11	10.98		
Flood Prone Width (Wfpa) - ft.			100			43			11.86			45.38			50.00	
Bankfull Cross-Section Area (Abkf) - ft. ²			20.7			9.1			4.86			7.36	6.06	7.56		
Bankfull Mean Depth (Dbkf) - ft.			1.9			1.3			0.62			1.60	0.58	0.69		
Bankfull Max Depth (Dmax) - ft.			2.5			1.8			1.22				1.17	1.84		
Width/Depth Ratio			5.6			6.1			12.63			3.88	8.81	15.91		
Entrenchment Ratio (Wfpa/Wbkf)			9.3			3			1.51			7.32	10.02	21.51		
Bank Height Ratio			1.0			1.8			4.40			1.00	1.00	1.18		
Wetted Perimeter - ft.			14.6			9.95			8.22			7.53	5.68	11.84		-
Hydraulic radius - ft.			1.42			0.91			0.59			0.98	0.53	0.64		
Pattern																
Belt Width (Wblt) - ft.						50				45.38	52.95]			50.00	
Radius of Curvature (Rc) - ft.						10				-		15.50	10.20	19.38	14.05	12.95
Meander Length (Lm) - ft.						50				62.00	86.80		60.00	80.00	70.00	60.00
Meander Width Ratio (Wblt/Wbkf)						6.8			·			7.32			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.00
Profile								<u> </u>								
Min Riffle Length (Lrif) - ft.			16			10	Alexandra destrict marks of which be									11.50
Min Riffle Slope (Srif) - ft./ft.			0.026			0.032										0.016
Pool Length (Lpool) - ft.			9			24			·							18.10
Pool-Pool Spacing (p-p) - ft.			40			27										51.90
Substrate			1						<u> </u>			1				
d ₅₀ (mm)		1	20			26			 			1			55.06	
d ₈₄ (mm)			38			76									83.88	
Additional Reach Parameters					1	1					l					
Valley Length (ft)			T			295			1360			1302			1312	
Channel Length (ft)			236			479			1455			2052	<u> </u>		2041	
Sinuosity						1.6			1.07			1.58			1.56	
Water Surface Slope (Save)			0.006			0.022			0.0124			0.0123	0.0091	0.0099	1.50	{
Bankfull Slope (Sval)			NA			0.022			0.0127			0.0078	0.0091	0.0099		<u> </u>
Rosgen Classification			E4			E4			B			E	E4	0.0097 C4	<u>├</u> ───┤	
Bankfull mean velocity (Vbkf)			4.7			6.9	<u>+</u>		4.18			2.83	124		2.83	
		ł		I	1	0.9		1	L 7.10	1	1	2.05	1	L	2.03	1 ·

Exhibit Table XI. Baseline Morphology and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes all run and/or riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

where only one measurement was taken, that is listed as a 'Med' value.

Blank fields indicate either no measurement was taken or data were not available at the time of this report.

Monitoring								
_	Year 1							
	Max	Med						
		0.44						
		5.11						
		50.00						
		2.99						
		0.58						
		1.17						
		8.81						
		21.51						
		1.00						
		5.68						
		0.53						
		50.00						
	19.38	16.79						
)	80.00	70.00						
		9.78						
	1							
)	15.70	14.50						
, ;	0.060	0.040						
,)	23.50	20.10						
,)		20.10 59.80						
,	66.10	39.80						
	encal as galage	66.1						
		55.1						
A. 6.849-0	[83.9						
		320.61						
		475.72						
		1.48						
		0.0099						
		0.0097						
		E4						
		2.83						
		20.4						
es v	with no 'Me	d' value;						

Station/Reach: Tributary B {Lower Tributary B Long-Term Monitoring Profile Station 0+00 to 4+ 4.08 (404.08 feet)} Reference Reach Data¹ XS 12+28.00, -35.88 S. Muddy Trib 4² S. Muddy Birchfield² As-Built³ Parameter **Pre-Existing** Design Min Max Med Min Dimension Drainage Area - mi. 1.3 0.14 0.44 0.44 0.44 10.8 Bankfull Width (Wbkf) - ft 7.35 7.83 6.20 10.98 5.11 Flood Prone Width (Wfpa) - ft 100 43 11.86 45.38 50.00 20.7 4.86 7.36 Bankfull Cross-Section Area (Abkf) - ft. 9.1 6.06 7.56 1.9 1.3 0.62 Bankfull Mean Depth (Dbkf) - ft 1.60 0.69 0.58 Bankfull Max Depth (Dmax) - ft 2.5 1.8 1.22 1.17 1.84 Width/Depth Ratio 5.6 6.1 12.63 3.88 8.81 15.91 9.3 3 1.51 7.32 Entrenchment Ratio (Wfpa/Wbkf) 10.02 21.51 Bank Height Ratio 1.0 1.8 4.40 1.00 1.18 1 Wetted Perimeter - ft 14.6 9.95 8.22 7.53 5.68 11.84 Hydraulic radius - ft 1.42 0.91 0.59 0.98 0.53 0.64 Belt Width (Wblt) - ft 50 45.38 52.95 50.00 Radius of Curvature (Rc) - ft 10 15.5 10.20 19.38 14.05 Meander Length (Lm) - ft 50 62 86.8 60.00 80.00 70.00 60.00 Meander Width Ratio (Wblt/Wbkf 6.8 7.32 Min Riffle Length (Lrif) - ft 16 10 12.00 Min Riffle Slope (Srif) - ft./ft 0.026 0.032 0.02 Pool Length (Lpool) - fi 9 24 13.30 40 27 Pool-Pool Spacing (p-p) - ft. 84.10 Substrate d₅₀ (mm 20 26 55.06 d₈₄ (mm 38 83.88 76 Additional Reach Parameters 1312 Valley Length (ft) 295 1360 1302 Channel Length (ft) 236 479 1455 2052 2041

1.6

0.022

0.025

E4

6.9

60

1.07

0.0124

В

4.18

20.4

Exhibit Table XI. Baseline Morphology and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

0.006

NA

E4

4.7

98

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

Sinuosit

Water Surface Slope (Save)

Bankfull mean velocity (Vbkf)

Bankfull Discharge (Qbkf)

Bankfull Slope (Sval)

Rosgen Classification

Pattern

Profile

As-Built dimension data includes all run and/or riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values

where only one measurement was taken, that is listed as a 'Med' value.

1.58

0.0123

0.0078

Е

2.83

20.4

1.56

2.83

20.4

Blank fields indicate either no measurement was taken or data were not available at the time of this report.

0.0091

0.0089

E4

0.0099

0.0097

C4

	Monitoring	
	Year 1 ⁴	
Min	Max	Med
	-	0.44
		10.98
		50.00
		7.56
		0.69
		1.84
		15.91
		10.02
		1.18
		11.84
		0.64
		50.00
10.20	15.54	13.34
60.00	80.00	70.00
		4.55
12.00	25.00	18.60
0.02	0.04	0.03
13.30	21.40	17.10
84.10	113.70	97.50
		55.06
		83.88
		404.08
_		251.58
		1.61
		0.0091
		0.0089
	<u> </u>	C4
	1	1 a aa
		2.83 20.4

APPENDIX A Vegetation Raw Data 1. Vegetation Monitoring Plot Photos 2. Vegetation Data Tables

Vegetation Plot 1 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 2 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 3 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 4 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 5 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 6 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 7 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 8 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 9 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 10 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 11 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 12 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 13 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 14 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 15 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 16 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 17 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 18 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 19 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 20 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 21 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 22 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 23 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 24 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 25 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 26 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 27 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 28 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 29 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

Vegetation Plot 30 Monitoring Year 1 (EMH&T, Inc. 9/19/06)

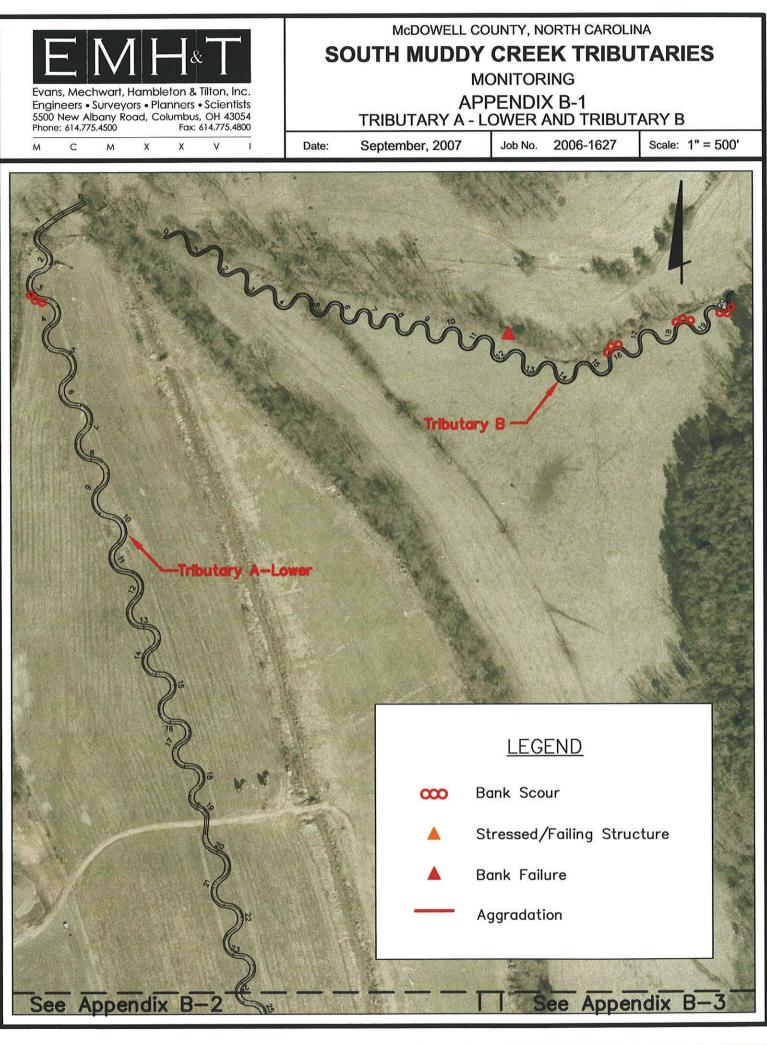
	Table 1. Vegetation Metadata
Report Prepared By	Holly Blunck
Date Prepared	12/15/2006 9:03
database name	CVS_EEP_DataEntry_v202.mdb
database location	Q:\ENVIRONMENTAL\Monitoring\EEP Vegetation Database
DESCRIPTION OF WORKSHEETS IN THIS DO	TS IN THIS DOCUMENT
Metadata	This worksheet, which is a summary of the project and the project data.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Stem Count by Plot and Spp	Count of living stems of each species for each plot; dead and missing stems are excluded.
PDO IECT SI IMMADV	
Project Code	
project Name	Sourti Muday Creek
length (tt)	
stream-to-edge width (It)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	30

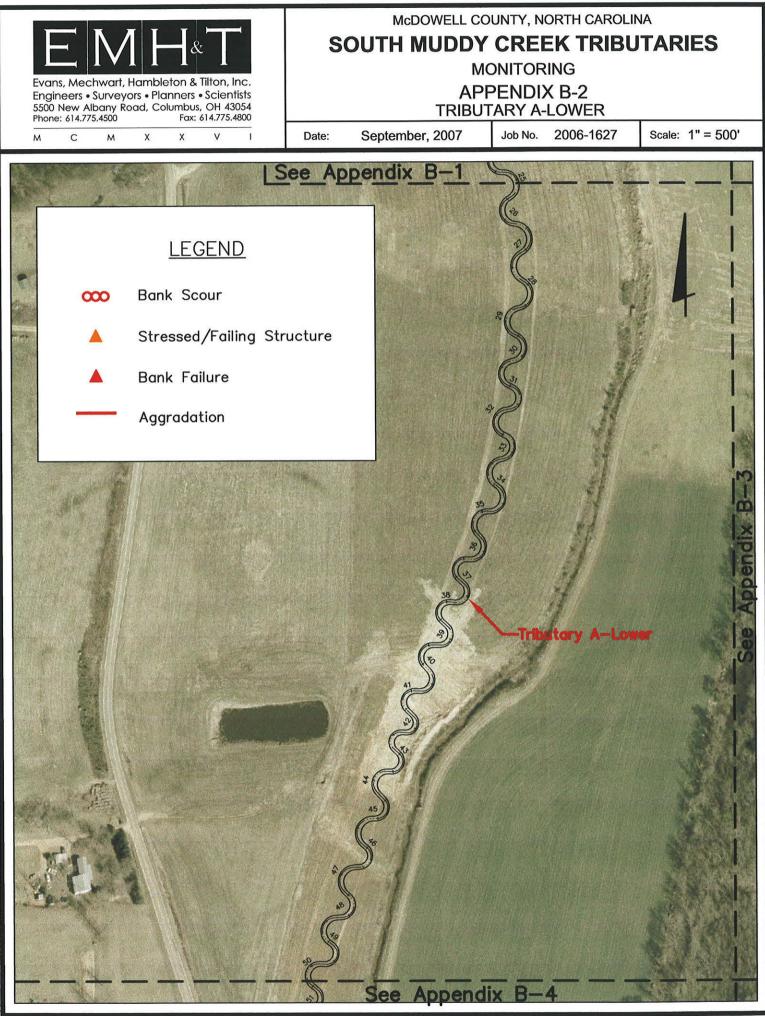
	Table 2. Vegetation Vigor by Species											
	Species	4	3	2	1	0	Missing					
	Alnus serrulata	15	6	2								
	Cephalanthus occidentalis	4										
	Cornus amomum	54	8	2								
	Fraxinus pennsylvanica	20	11									
	Quercus alba	22	13	2								
	Quercus pagoda	10	3									
	Quercus phellos	3	7									
	Salix nigra	5										
	Sambucus canadensis	1										
	Platanus occidentalis	16	6									
TOT:	10	150	54	6								

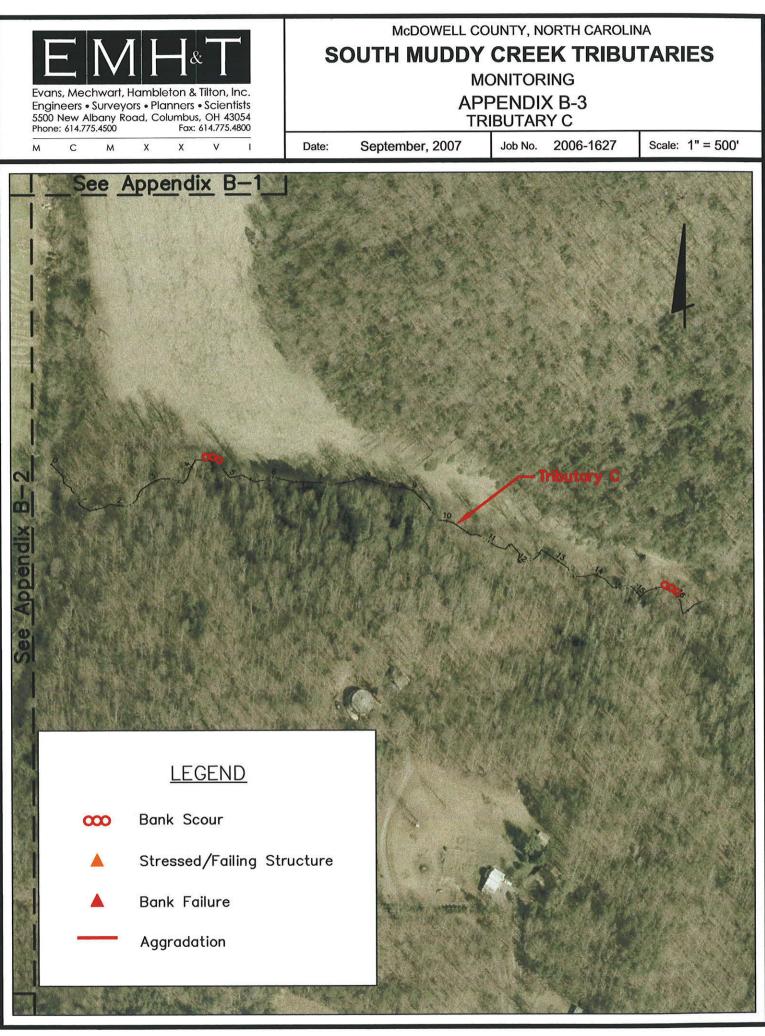
	Species	All Damage Categories	(no damage)	Deer	Diseased	Flood	Insects	Other/Unknown Animal	D:- LI-
	Alnus serrulata	23	20						
	Cephalanthus occidentalis	4	4						
	Cornus amomum	64	55		2	1			
	Fraxinus pennsylvanica	31	29		1		1		Γ
	Platanus occidentalis	22	21		1				
	Quercus alba	37	30			1	1		
	Quercus pagoda	13	13						
	Quercus phellos	10	7				3		Γ
	Salix nigra	5	5						Γ
	Sambucus canadensis	1	1						
TOT:	10	210	185	0	4	2	5	0	–

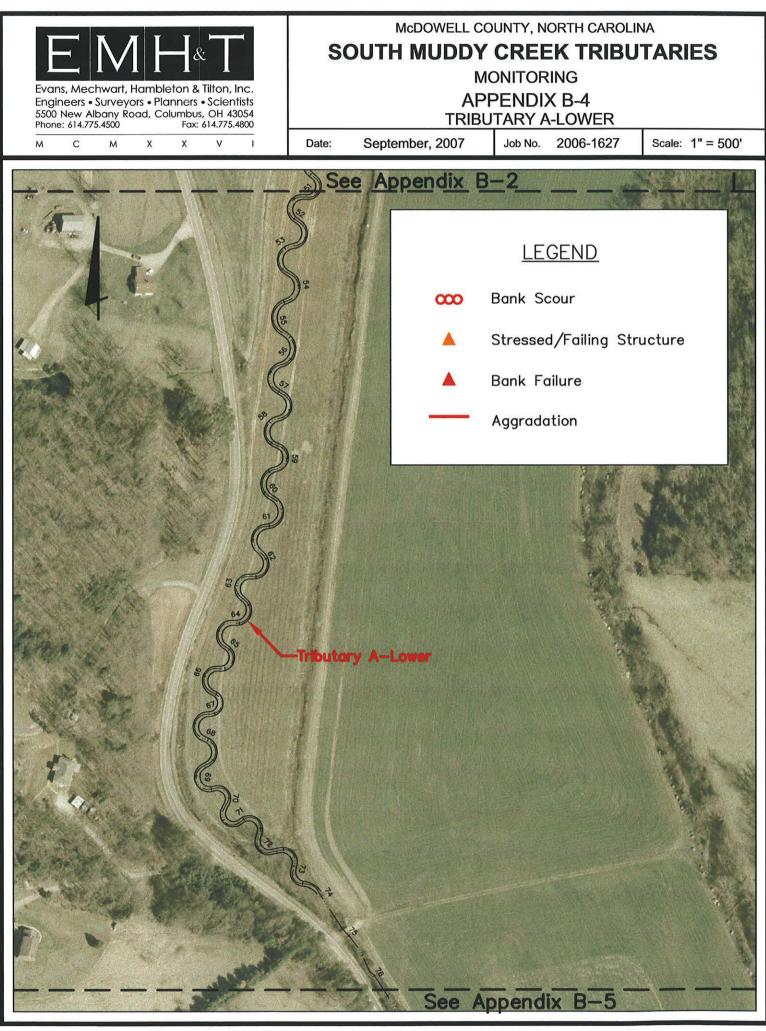
plot	All Damage Categories	(no damage)	_Enter other damage_	Deer	Diseased	Flood	Insects	Other/Unknown Anima	(other damage)
D0400601-01-0001	10	7							3
 D0400601-01-0002	8	7							1
D0400601-01-0003	13	13	:						
 D0400601-01-0004	7	6				1			
 D0400601-01-0005	10	9				1			
D0400601-01-0006	7	5			2				
D0400601-01-0007	8	8							
 D0400601-01-0008	7	7							
D0400601-01-0009	10	7			1		1		1
D0400601-01-0010	7	7							
D0400601-01-0011	6	5			1				
D0400601-01-0012	7	7							
D0400601-01-0013	7	5					2		
D0400601-01-0014	5	5							
D0400601-01-0015	8	7							
D0400601-01-0016	4	4							
D0400601-01-0017	4	4							
D0400601-01-0018	7	7							
D0400601-01-0019	4	3							
D0400601-01-0020	5	4					1		
D0400601-01-0021	11	8							1
D0400601-01-0022	3	2							
 D0400601-01-0023	8	8							
D0400601-01-0024	7	6					1		
D0400601-01-0025	8	8							
D0400601-01-0026	11	10							·
 D0400601-01-0027	6	6							
D0400601-01-0028	11	9							2
D0400601-01-0030	1	1							

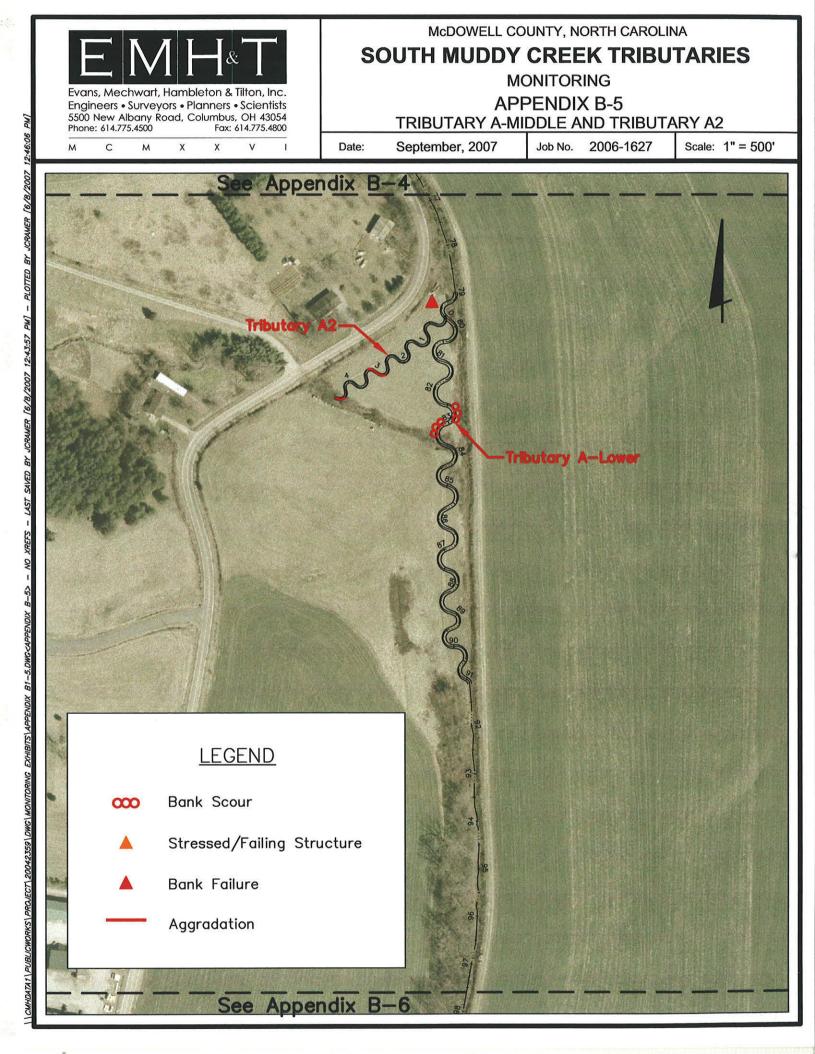
	plot D0400601-01-0030				1							~
Γ	plot D0400601-01-0028	7						4				5
ľ	w	3						S				œ
ľ	plot D0400601-01-0026	8						З				11
F	······································	5						3			_	80
F	plot D0400601-01-0024			1	2	-	3			_		7
ŀ	plot D0400601-01-0023			6	1		1				_	8
F	plot D0400601-01-0022			2	-							e
ľ	plot D0400601-01-0021			3		-	6					1
F	plot D0400601-01-0020			2	-				2			ŝ
F	6100-10-10900400 joid			1		1	2					4
F	plot D0400601-01-0018			3	3	1					-	7
ſ	7100-10-10900400 30ld				3		1					4
ſ	8101-01-0300400 3014			1	1		2					4
	plot D0400601-01-0015			1		2	4					8
Se	4100-10-10300400 fold			-	2		2					5
١ <u>ö</u>	plot D0400601-01-0013					ţ	-		5			7
Stem Count by Plot and Species	plot D0400601-01-0012			2	3				1		1	7
5	rr00-r0-r0300400 told			S			7					6
Ĩ.	0100-10-10900400 told		4	3								7
ട്ര[plot D0400601-01-0009			4	2	~	3					10
ই	plot D0400601-01-0008			e	۱	2						7
₹ľ	7000-10-10900400 10ld			2			1			5		8
ន្លា	9000-10-10900400 Jolq			S	2							7
Ξ	plot D0400601-01-0005			e		ω	1					10
쁆	plot D0400601-01-0004					2	S					7
ഗ്	plot D0400601-01-0003			9	2	с	2					13
Table	plot D0400601-01-0002			S	2		-					8
اµ	plot D0400601-01-0001			5	e		۲					10
ŀ	*******	Ø,	4	e	ω.	œ		<u>с</u>	2	5	Ť.	<u>`</u>
┝		<u> 9</u> 1	_	_	1	-	2	3				
ļ	# stold	4		21	1	42	1	4	5			12
	Total Stems	23	4	64	31	22	37	13	10	2		210
	səicəqS	Alnus serrulata	Cephalanthus occidentalis	Cornus amomum	Fraxinus pennsylvanica	Platanus occidentalis	Quercus alba	Quercus pagoda	Quercus phellos	Salix nigra	Sambucus canadensis	
		Aln	S.	[S	Fra	Pla	Įð	ð	ð	Sal	Sar	12
			1	-								TOT: 12

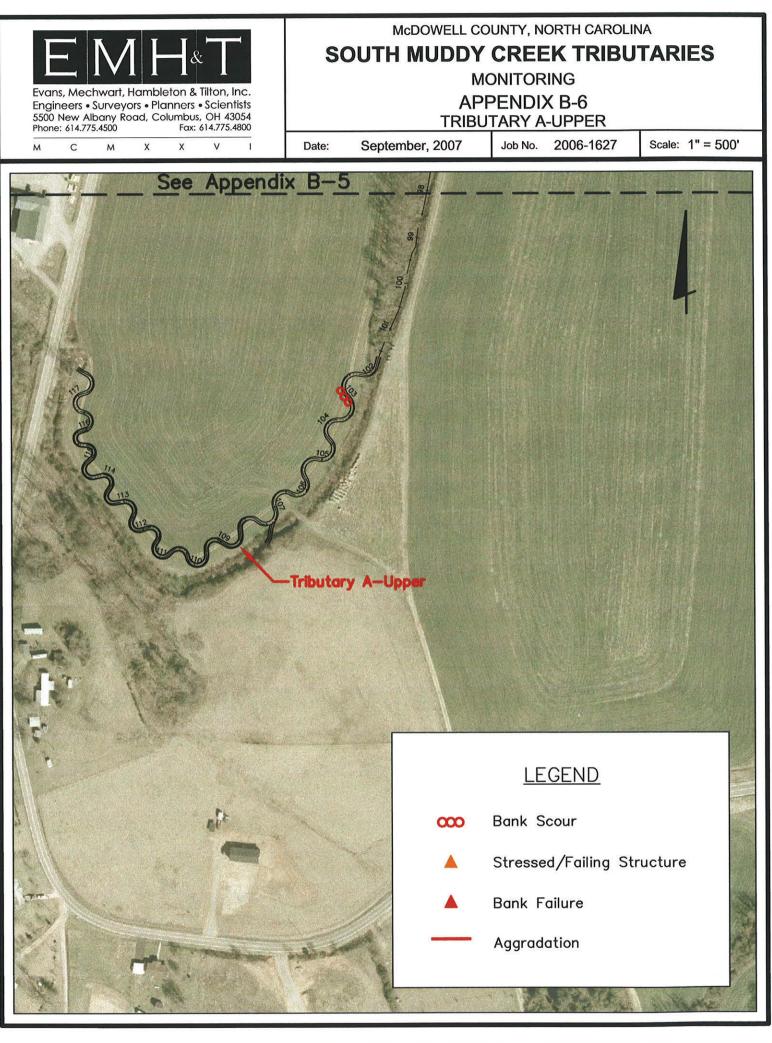

•


.


APPENDIX B


Geomorphologic Raw Data


Stream Problem Areas Plan View
 Stream Problem Area Photos
 Fixed Station Photos
 Table B1. Qualitative Visual Stability Assessment
 Cross Section Plots
 Longitudinal Plots
 Pebble Count Plots



[Md

SPA 1 Aggradation in Tributary A2 at station 3+00. (EMH&T, Inc. 9/19/06)

SPA 2 Bank failure along Tributary B at station 12+10. (EMH&T, Inc. 4/14/07)

SPA 3 Bank failure along Tributary B at station 12+10. (EMH&T, Inc. 4/14/07)

SPA 4 Bank scour along Tributary B at station 19+70. (EMH&T, Inc. 4/14/07)

SPA 5 Bank scour along Tributary A (middle) at station 83+30. (EMH&T, Inc. 4/14/07)

SPA 6 Bank scour along Tributary C at station 15+70. (EMH&T, Inc. 4/14/07)

Fixed Station 1 Overview of Tributary A (upper), facing upstream. (EMH&T, Inc. 9/20/06)

Fixed Station 2 Overview of valley along Tributary A2 at confluence with Tributary A, facing upstream. (EMH&T, Inc. 97/11/06)

Fixed Station 3 Overview of valley along Tributary A (lower) near station 31+50, facing downstream. (EMH&T, Inc. 9/19/06)

Fixed Station 4 Overview of valley along Tributary A (lower) near station 31+50, facing upstream. (EMH&T, Inc. 9/20/06)

Fixed Station 5 Overview of valley on Tributary A (lower) at large culvert, facing upstream. (EMH&T, Inc. 9/19/06)

Fixed Station 6 Overview of valley on Tributary A (lower) at large culvert, facing downstream. (EMH&T, Inc. 9/19/06)

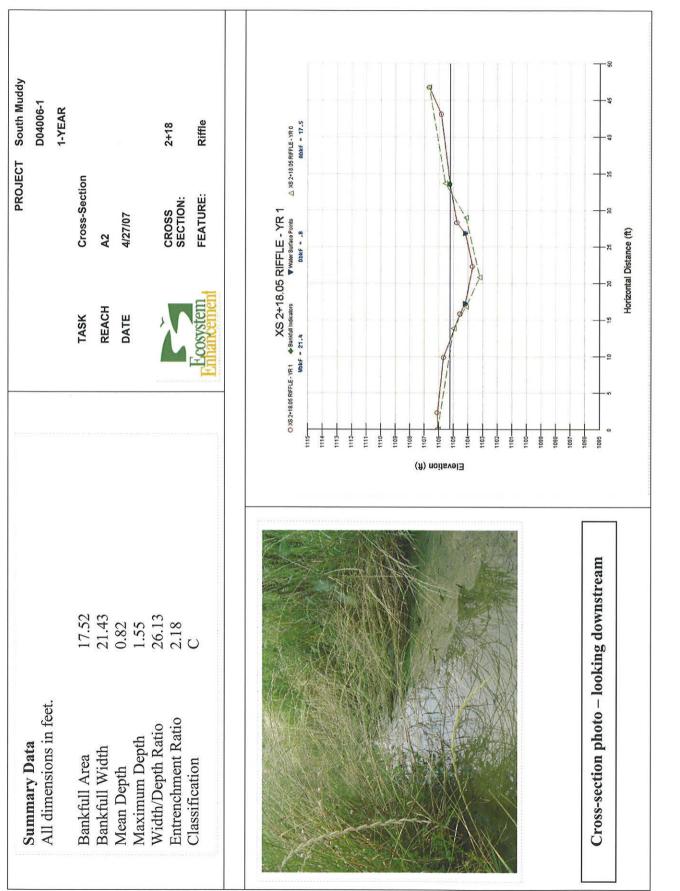
Fixed Station 7 Overview of valley along Tributary B, facing upstream. (EMH&T, Inc. 9/19/06)

Fixed Station 8 Overview of valley along Tributary B, facing downstream. (EMH&T, Inc. 9/19/06)

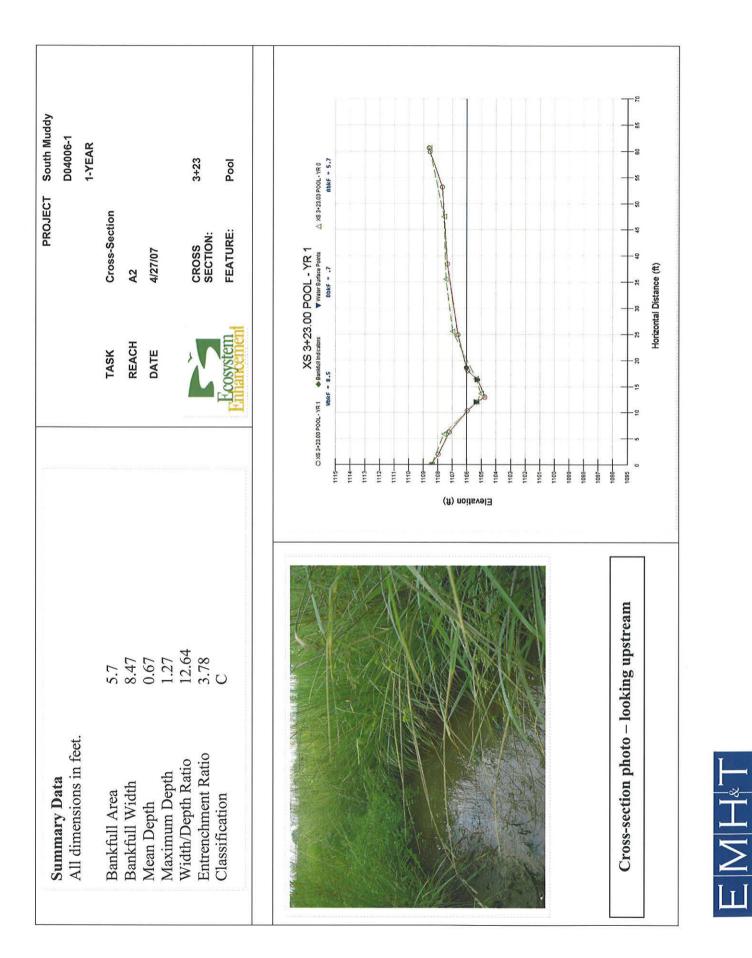
Fixed Station 9 Overview of Tributary C near station 6+50, facing downstream. (EMH&T, Inc. 9/19/06)

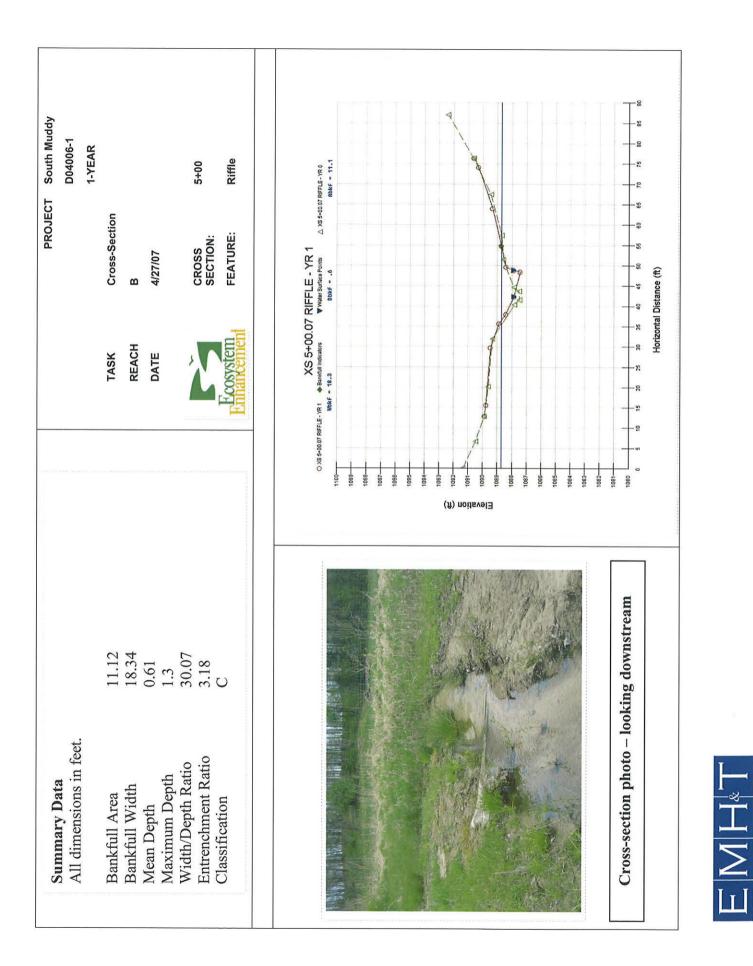
Fixed Station 10 Overview of Tributary C near station 8+60, facing downstream. (EMH&T, Inc. 9/19/06)

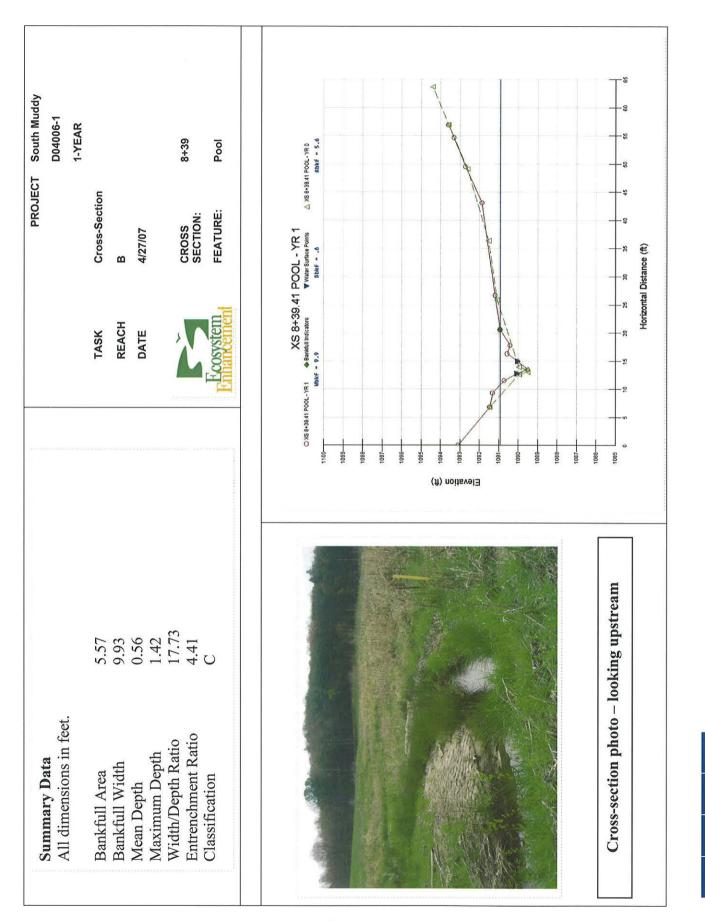
	Table B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	ability Assess EEP Project N	ment o. D04006-01			
	Segment/Reach: A (upper)	oper)				
		(# Stable)				Feature
		Number	Total	Total Number / % Perform	% Perform	Perform.
		Ъ	number per	number per feet in unstable in Stable	in Stable	Mean or
Feature Category	Metric (per As-built and reference baselines	as Intended	As-built	state	Condition	Total
A. Riffles	1. Present?	24	24	24 N/A	100	
	2. Armor stable (e.g. no displacement)?	24	24	24 N/A	100	
	3. Facet grade appears stable?	24	24	24 N/A	100	
	4. Minimal evidence of embedding/fining?	24	24	24 N/A	100	
	5. Length appropriate?	24	24	24 N/A	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	25	25	25 N/A	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	25	25	25 N/A	100	
	3. Length appropriate?	25	25	25 N/A	100	100%
Thalweg	 Upstream of meander bend (run/inflection) centering? 	25	25	0	100	
	2. Downstream of meander (glide/inflection) centering?	25	25	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	24	25	Ļ	96	
	Of those eroding, # w/concomitant point bar formation?	25	25	0	100	
	3. Apparent Rc within spec?	25	25	0	100	
	4. Sufficient floodplain access and relief?	25	25	0	100	%66
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/ 0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
. Vanes	1. Free of back or arm scour?	N/A	0	0 N/A	N/A	
		N/A	0	0 N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	0	0 N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	0 N/A	N/A	N/A
Nads/ Boulders	G. Wads/ Boulders [1. Free of scour?	N/A	0	0 N/A	N/A	
	2. Footing stable?	N/A	0	0 N/A	N/A	N/A


.ssessment ject No. D04006-01	(6	 Total Total Number / % Perform Perform. 	number per feet in unstable in Stable	ided As-built state Condition Total	18 18 N/A 100	18 18 N/A 100	18 18 N/A 100	18 18 N/A 100	18 18 N/A 100 100%	19 19 N/A 100	100	19 19 N/A 100 100%	19 19 0 100	19 19 0 100 100%	16 19 3 84	19 19 0 100	19 19 0 100	19 19 0 100 96%	N/A [0/ 0 feet 100]		N/A 0/ 0 feet 100 100%	0 N/A N/A	0 N/A N/A	0 N/A N/A	0 N/A N/A N/A	0 N/A N/A	
10-90		Total Number / 0	er per feet in unstable i	state	18 N/A	18 N/A	18 N/A	18 N/A	18 N/A	19 N/A	19 N/A	19 N/A							0/ 0 feet		0/ 0 feet						0 (N1/A
ability Assessment EEP Project No. D04 ddle)	(# Stable)	Number Total	ing	as Intended As-built	18	18	18	18	18	19	19	19	19	19	16	19	19	19	N/A N/A		N/A N/A	N/A	N/A	N/A	N/A	N/A	A1 (A
Table B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A (middle)				Metric (per As-built and reference baselines	1. Present?	2. Armor stable (e.g. no displacement)?	3. Facet grade appears stable?	4. Minimal evidence of embedding/fining?	5. Length appropriate?	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	3. Length appropriate?	1. Upstream of meander bend (run/inflection) centering?	2. Downstream of meander (glide/inflection) centering?	1. Outer bend in state of limited/controlled erosion?	2. Of those eroding, # w/concomitant point bar formation?	3. Apparent Rc within spec?	4. Sufficient floodplain access and relief?	1. General channel bed aggradation areas (bar formation)	2. Channel bed degradation - areas of increasing downcutting	or headcutting?	1. Free of back or arm scour?	2. Height appropriate?	3. Angle and geometry appear appropriate?	4. Free of piping or other structural failures?	G. Wads/ Boulders 1. Free of scour?	
				Feature Category	A. Riffles	- - -				B. Pools			C. Thalweg		D. Meanders				E. Bed General			F. Vanes			1	G. Wads/ Boulder	

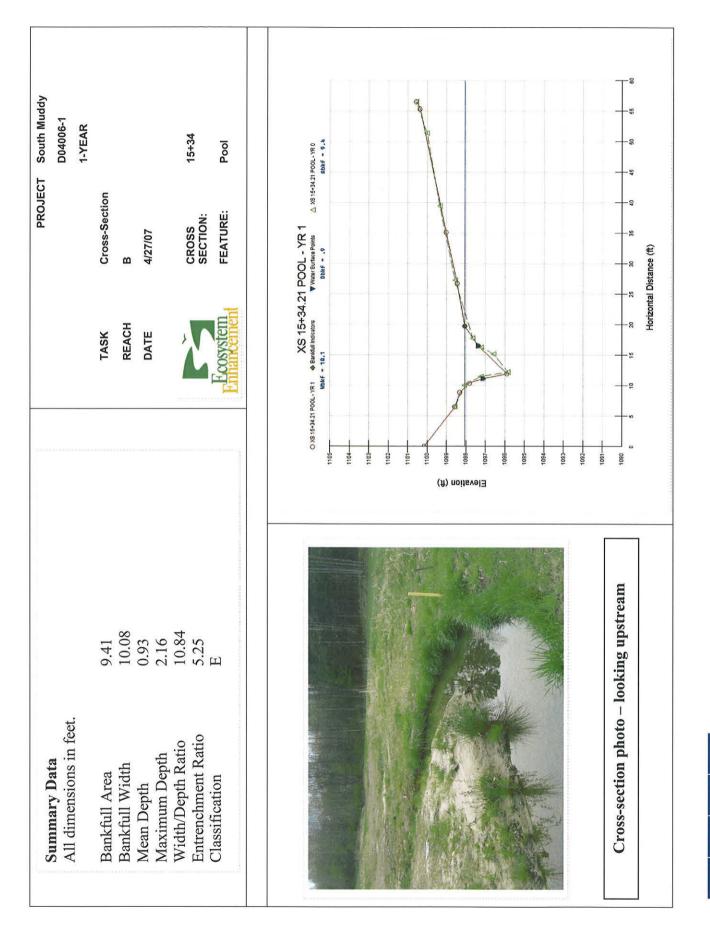
	1 able B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A (lower)	ablity Assess EEP Project N wer)	ment 0. D04006-01			
		(# Stable)				Feature
		Number	Total	Total Number / % Perform	% Perform	Perform.
		Performing	number per	number per feet in unstable in Stable		Mean or
Feature Category	Metric (per As-built and reference baselines	as Intended	As-built	state	Condition	Total
A. Riffles	1. Present?	63	63	93 N/A	100	
	Armor stable (e.g. no displacement)?	63	63	93 N/A	100	
	Facet grade appears stable?	93	93	93 N/A	100	
	Minimal evidence of embedding/fining?	63	93	93 N/A	100	
	5. Length appropriate?	93	63	N/A	100	100%
B. Pools	 Present? (e.g. not subject to severe aggrad. or migrat.?) 	96	95	95 N/A	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	95	99	95 N/A	100	
	3. Length appropriate?	95	99	N/A	100	100%
C. Thaiweg	1. Upstream of meander bend (run/inflection) centering?	36	65	0	100	
	Downstream of meander (glide/inflection) centering?	66	95	0	100	100%
D. Meanders	 Outer bend in state of limited/controlled erosion? 	94	65	L	98	
	Of those eroding, # w/concomitant point bar formation?	65	95	0	100	
	3. Apparent Rc within spec?	99	65	0	100	
	4. Sufficient floodplain access and relief?	56	99	0	100	66%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/ 0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	0 N/A	N/A	
	2. Height appropriate?	N/A	0	0 N/A	N/A	
	Angle and geometry appear appropriate?	N/A	0	N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	0 N/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour?	1. Free of scour?	N/A	0	0 N/A	N/A	
	2. Footing stable?	N/A	0	0 N/A	N/A	N/A

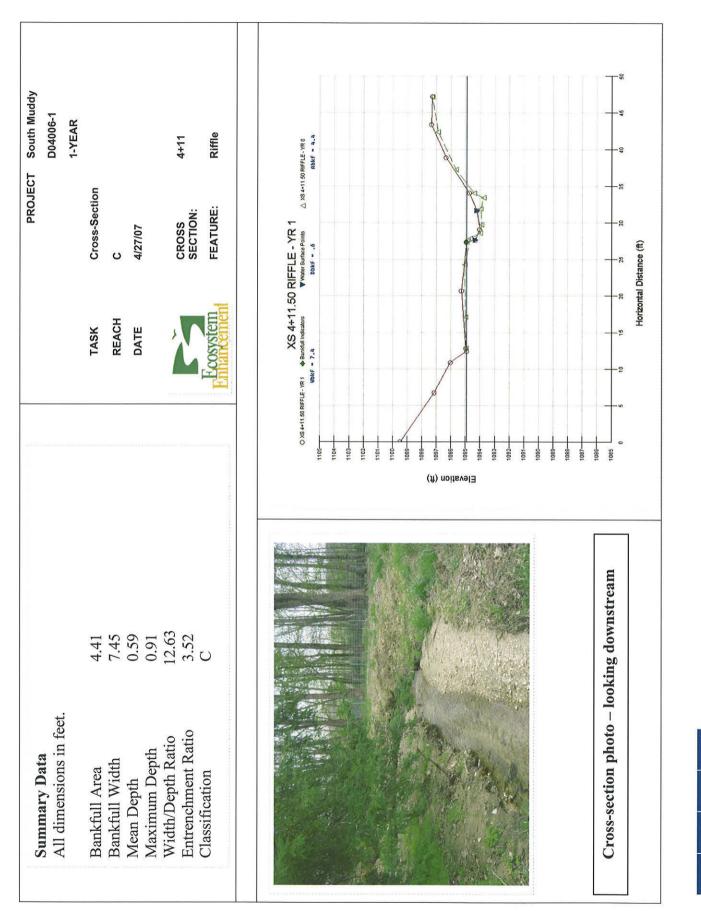

(# Stable) Total Number Total Number % Performing Number Number Total Number % Performation 9. no displacement)? 33 33 N/A Condition 9. no subject to severe aggrad. or migrat.?) 34 N/A Condition 9. (Max Pool D:Mean BK?-1.6?) 34 N/A Condition 10. dider bend (run/inflection) centering? 34 N/A Condition 110 110 119 10 Condition 1111 110 110 Conditin Condition 1111 </th <th></th> <th>Table B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: C</th> <th>ability Assess EEP Project N</th> <th>ment (o. D04006-0</th> <th></th> <th></th> <th></th>		Table B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: C	ability Assess EEP Project N	ment (o. D04006-0			
Metric (per As-built and reference baselines Performing humber per feet in unstable Condition 1 Present? 33 33 N/A Condition 2. Armor stable (e.g. no displacement)? 33 33 N/A Condition 3. Facet grade appears stable? 33 33 N/A Condition 3. Facet grade appears stable? 33 33 N/A Condition 4 Minimal evidence of embedding/filming? 33 33 N/A Condition 5. Length appropriate? 33 33 N/A Condition Settime Condition 2. Sufficiently deep (Max Pool D:Mean Bk/>1.6?) 33 34 34 N/A Condition 3. Length appropriate? 3. Longth appropriate? 34 34 N/A Condition 3. Longth appropriate? 3. Longth appropriate? 34 34 Condition Condition 3. Longth appropriate? 3. Apparent Rc within Spec? 34 Condition Con			(# Stable)	Total	Total Number /	% Perform	Feature Perform
Metric (per As-built and reference baselines)as Intended As-built stateCondition1. Present? 33 NMA 33 NMACondition2. Armor stable (e.g. no displacement)? 33 NMA 33 NMA 12 Nminal evidence of embedding/fining? 33 NMA 13 NMA4. Minimal evidence of embedding/fining? 33 NMA 33 NMA 12 Nminal evidence of embedding/fining? 33 NMA 12 NMA 12 Nminal evidence of embedding/fining? 33 NMA 12 NMA 12 Nminal evidence of embedding/fining? 33 NMA 33 NMA 12 NmA			Performing	number per	feet in unstable	in Stable	Mean or
1. Present? 33 N/A 33 N/A2. Armor stable (e.g. no displacement)? 33 N/A 33 N/A3. Tactet grade appears stable/? 33 N/A 33 N/A4. Minimal evidence of embedding/fining? 33 N/A 33 N/A5. Length appropriate? 33 N/A 33 N/A5. Length appropriate? 33 N/A 33 N/A7. Sufficiently deep (Max Pool D:Mean Bk/>1. Present? (e.g. not subject to severe aggrad. or migrat.?) 34 N/A9. Length appropriate? 33 N/A 34 N/A9. Longth appropriate? 34 N/A 34 N/A9. Lotter bend in state of limitection) centering? 34 34 N/A9. Cof those eroding, # w/concomitant point bar formation? 32 349. Sufficient floodplain access and relief? 34 34 N/A9. Cof those eroding for mascon? 34 N/A9. Cof those eroding for mascon? 34 N/A9. Cof those eroding for mascon? 34 N/A9. Cof those eroding? 34 N/A9. Sufficient floodplain access and relief? 34 N/A9. Cof those eroding? 34 N/A9. Sufficient floodplain access and relief? 34 N/A9. Sufficient floodplain access and relief? 34 N/A9. Sufficient	Feature Category	Metric (per As-built and reference baselines	as Intended	As-built	state	Condition	Total
3.3. in displacement)? 3.3 in N/A 3.4 in N/A	A. Riffles	1. Present?	33	33	N/A	100	
opears stable? 33 33 N/A Indecoding/fining? 100 Indecoding/fining? 33 N/A Indecoding/fining Indecoding/fining 100 Indecoding/fining 100 <		2. Armor stable (e.g. no displacement)?	33	33	N/A	100	
ccc of embedding/fining?33 33 N/A 1 riate?33 31 N/A 1 not subject to severe aggrad. or migrat.?)34 34 N/A 1 sp (Max Pool D:Mean Bkf>1.6?)34 34 N/A 1 sp (Max Pool D:Mean Bkf>1.6?) 34 34 N/A 1 sp (Max Pool D:Mean Bkf>1.6?) 34 34 N/A 1 sp (Max Pool D:Mean Bkf>1.6?) 34 34 N/A 1 sp (Max Pool D:Mean Bkf>1.6?) 34 34 N/A 0 sp (Max Pool D:Mean Bkf>1.6?) 34 34 0 0 state of limited/controlled erosion? 32 34 34 0 state of limited/controlled erosion? 32 34 34 0 state of limited/controlled erosion? 34 34 0 0 egradation - areas of increasing downcutting N/A N/A 0 0 0 egradation - areas of increasing downcutting N/A N/A 0 0 0 error? N/A N/A N/A 0 0		Facet grade appears stable?	33	33	N/A	100	
riate? 33 N/A Induction not subject to severe aggrad. or migrat.?) 34 34 N/A Induction ep (Max Pool D:Mean Bkt>1.6?) 34 34 N/A Induction		4. Minimal evidence of embedding/fining?	33	33	N/A	100	
not subject to severe aggrad. or migrat.?) 34 N/A 34 N/A ap (Max Pool D:Mean Bkf>1.6?) 34 34 N/A 34 riate? 34 34 19 0 eander bend (run/inflection) centering? 19 19 0 f meander (glide/inflection) centering? 134 2 f meander (glide/inflection) centering? 32 34 2 f meander (glide/inflection) centering? 32 34 0 f meander (glide/inflection) centering? 34 34 0 f meander (glide/inflection) centering N/A $0/0$ (feet 0 f meander (glide/inflection) N/A $0/0$ (feet $0/0$ $0/0$ f metry appear appropriate? N/A $0/0$ (N/A N/A $0/0$ (N/A f metry appear appropriate? $0/0$ $0/0$ $0/0$ $0/0$ f metry appear appropriate? $0/0$ $0/0$ $0/0$ $0/0$ f metry appear appropriate? $0/0$ $0/0$ $0/0$ $0/0$ </td <td></td> <td>5. Length appropriate?</td> <td>33</td> <td>33</td> <td>N/A</td> <td>100</td> <td>100%</td>		5. Length appropriate?	33	33	N/A	100	100%
sp (Max Pool D:Mean Bkf>1.6?) 34 N/A 34 N/A 34 riate? 34 N/A 34 N/A 9 eander bend (run/inflection) centering? 19 19 0 0 f meander (glide/inflection) centering? 19 19 0 0 f meander (glide/inflection) centering? 32 34 0 0 state of limited/controlled erosion? 34 34 0 0 $00, \pm w/concomitant point bar formation?34340000, \pm w/concomitant point bar formation?34340000, \pm w/concomitant point bar formation?0.40.70000, \pm w/concomitant point bar formation?0.70.70000, \pm w/concomitant point bar formation?0.70.70.70.700, \pm w/concomitant point bar formation?0.70.70.70.701, \pm w/concomitant point areas (bar formation)0.70.70.70.701, \pm w/concom0.70.70.70.70.701, \pm w/concom0.70.70.70.70.701, \pm w/concom0.70.70.70.70.701, \pm w/concom0.70.70.70.70.701, \pm w/concom0.70.70.70.70.701, \pm w/concom0.70.70.70.701,$	B. Pools	 Present? (e.g. not subject to severe aggrad. or migrat.?) 	34	34	A/N	100	
riate? 34 34 N/A 34 N/A 134		2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	34	34	N/A	100	
eander bend (run/inflection) centering? 19 19 0 f meander (glide/inflection) centering? 19 19 0 state of limited/controlled erosion? 32 34 0 0 rithin spec? 34 34 0 0 0 rithin spec? 34 34 0 0 0 0 rithin spec? 34 34 34 0 <td>-</td> <td>3. Length appropriate?</td> <td>34</td> <td>34</td> <td>N/A</td> <td>100</td> <td>100%</td>	-	3. Length appropriate?	34	34	N/A	100	100%
f meander (glide/inflection) centering?19190state of limited/controlled erosion?3232342 q_0 , # w/concomitant point bar formation?343400 q_0 , # w/concomitant point bar formation?343400ithin spec?34343400plain access and relief?3434000el bed aggradation areas (bar formation)N/AN/A0/0 feet1egradation - areas of increasing downcuttingN/AN/A0/0 feet1rarm scour?N/AN/A0/0 feetN/AN/Ararm scour?N/AN/A0/0 feetN/AN/Arate?N/AN/AN/AN/AN/AN/Aor other structural failures?N/AN/AN/AN/AN/A?N/AN/AN/AN/AN/AN/A	C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	19	19		100	
state of limited/controlled erosion? 32 34 2 $ng, \#$ w/concomitant point bar formation? 34 34 0 $ng, \#$ w/concomitant point bar formation? 34 34 0 $ntin spec?$ 34 34 34 0 $plain access and relief?343400plain access and relief?343400plain access and relief?N/AN/A0/0 feet0el bed aggradation areas (bar formation)N/AN/A0/0 feet0egradation - areas of increasing downcuttingN/AN/A0/0 feetN/Aerr scour?N/AN/A0/0 feetN/Anam scour?N/AN/AN/AN/Anatry appear appropriate?N/AN/AN/AN/Aor other structural failures?N/AN/AN/AN/A?N/AN/A0/0N/AN/A$		2. Downstream of meander (glide/inflection) centering?	19	19		100	100%
ng, # w/concomitant point bar formation? 34 34 0 ithin spec? 34 34 0 plain access and relief? 34 34 0 plain access and relief? 34 34 0 el bed aggradation areas (bar formation) N/A N/A 0/0 feet 1 egradation - areas of increasing downcutting N/A N/A 0/0 feet 1 r arm scour? N/A N/A 0/0 feet N/A N/A rate ? N/A N/A 0/0 feet N/A N/A rate? N/A N/A 0/0 feet N/A N/A or other structural failures? N/A N/A N/A N/A or other structural failures? N/A N/A N/A N/A ? N/A N/A N/A N/A N/A	D. Meanders	 Outer bend in state of limited/controlled erosion? 	32	34	2	94	
ithin spec? 34 34 0 plain access and relief? 34 34 0 el bed aggradation areas (bar formation) N/A N/A 0/0 feet egradation - areas of increasing downcutting N/A N/A 0/0 feet n/A N/A N/A 0/0 feet N/A rarm scour? N/A N/A 0/0 feet N/A rarm scour? N/A N/A N/A N/A iate? N/A N/A N/A N/A or other structural failures? N/A N/A N/A ? N/A N/A N/A N/A		Of those eroding, # w/concomitant point bar formation?	34	34	0	100	
plain access and relief? 34 34 0 el bed aggradation areas (bar formation) N/A N/A 0/0 feet egradation - areas of increasing downcutting N/A N/A 0/0 feet n/A N/A N/A 0/0 feet N/A r arm scour? N/A N/A 0/0 feet N/A r arm scour? N/A N/A 0/1/A N/A r arm scour? N/A N/A N/A N/A or other structural failures? N/A N/A N/A or other structural failures? N/A 0 N/A ? N/A N/A 0 N/A		3. Apparent Rc within spec?	34	34	0	100	
ef bed aggradation areas (bar formation) N/A N/A 0/ 0 feet egradation - areas of increasing downcutting N/A N/A N/A n/A N/A 0/ 0 feet N/A r arm scour? N/A N/A N/A r arm scour? N/A 0/ N/A N/A r arm scour? N/A 0/ N/A N/A r arm scour? N/A 0 N/A or other structural failures? N/A 0 N/A or other structural failures? N/A 0 N/A ? N/A 0 N/A N/A		4. Sufficient floodplain access and relief?	34	34	0	100	%66
egradation - areas of increasing downcutting N/A N/A 0/ 0 feet N/A 0/ 0 feet N/A international and the contract of the contrac	E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/ 0 feet	100	
N/A N/A O/ 0 feet r arm scour? N/A 0/ 0 feet N/A iate? N/A 0 N/A N/A metry appear appropriate? N/A 0 N/A N/A or other structural failures? N/A 0 N/A N/A N/A N/A 0 N/A N/A or other structural failures? N/A 0 N/A N/A ? N/A N/A 0 N/A N/A N/A		2. Channel bed degradation - areas of increasing downcutting					
r arm scour? N/A 0 N/A itate? N/A N/A N/A 0 N/A itate? N/A 0		or headcutting?	N/A	N/A	0/ 0 feet	100	100%
iate? 0 N/A	F. Vanes	1. Free of back or arm scour?	N/A	0	N/A	N/A	
metry appear appropriate? N/A 0 N/A 2 0 N/A 0 0 N/A 0 0 0 N/A 0 0 N/A 0 0 0 N/A 0 0 0 N/A 0 N 0 N/A 0 N 0 N/A 0 N 0 N/A 0 N 0 N 0 N/A 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0		2. Height appropriate?	N/A	0	N/A	N/A	
or other structural failures? N/A 0 N/A 0 N/A 2 0 N/A		Angle and geometry appear appropriate?	N/A	0	N/A	N/A	
		4. Free of piping or other structural failures?	N/A	0	N/A	N/A	N/A
	G. Wads/ Boulders	1. Free of scour?	N/A	0	N/A	N/A	
		2. Footing stable?	N/A	0	N/A	N/A	N/A

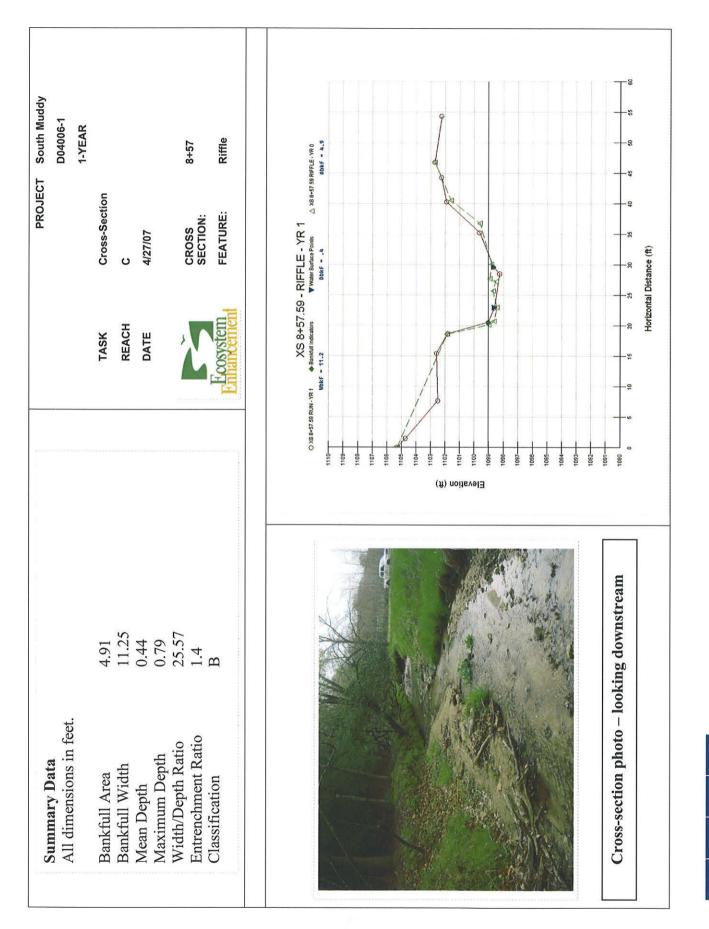

	Table B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: B	ability Assess EEP Project N	sment (o. D04006-0	I		
		(# Stable) Number	Total	Total Number /	% Perform	Feature Perform.
Feature Category	Metric (per As-built and reference baselines	Performing number as Intended As-built	number per As-built	number per feet in unstable in Stable As-built state Conditior	in Stable Condition	Mean or Total
A. Riffles	1. Present?	22	23		96	
	2. Armor stable (e.g. no displacement)?	23	23	0	100	
	3. Facet grade appears stable?	23	23	0	100	
	4. Minimal evidence of embedding/fining?	23	23	0	100	
	5. Length appropriate?	23	23	0	100	%66
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	23	23	0	100	
	D:Mean Bkf>1.6	23	23	0	100	
	3. Length appropriate?	23	23	0	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	36	36	0	100	
	2. Downstream of meander (glide/inflection) centering?	36	36	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	32	36	4	68	
	2. Of those eroding, # w/concomitant point bar formation?	35	36	Ţ	26	
	3. Apparent Rc within spec?	36	36	0	100	
	4. Sufficient floodplain access and relief?	36	36	0	100	97%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/ 0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	0 N/A	N/A	
	2. Height appropriate?	N/A	0	0 N/A	N/A	
	 Angle and geometry appear appropriate? 	N/A	0	0 N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	0 N/A	N/A	N/A
G. Wads/ Boulders	G. Wads/ Boulders [1. Free of scour?	N/A	0	0 N/A	N/A	
	2. Footing stable?	N/A	0	0 N/A	N/A	N/A
H. Log Sills	 Maintaining grade control? 	13	14	ł	63	
	2. Minimal evidence of sedimentation in adjacent pool?	14	14	0	100	97%

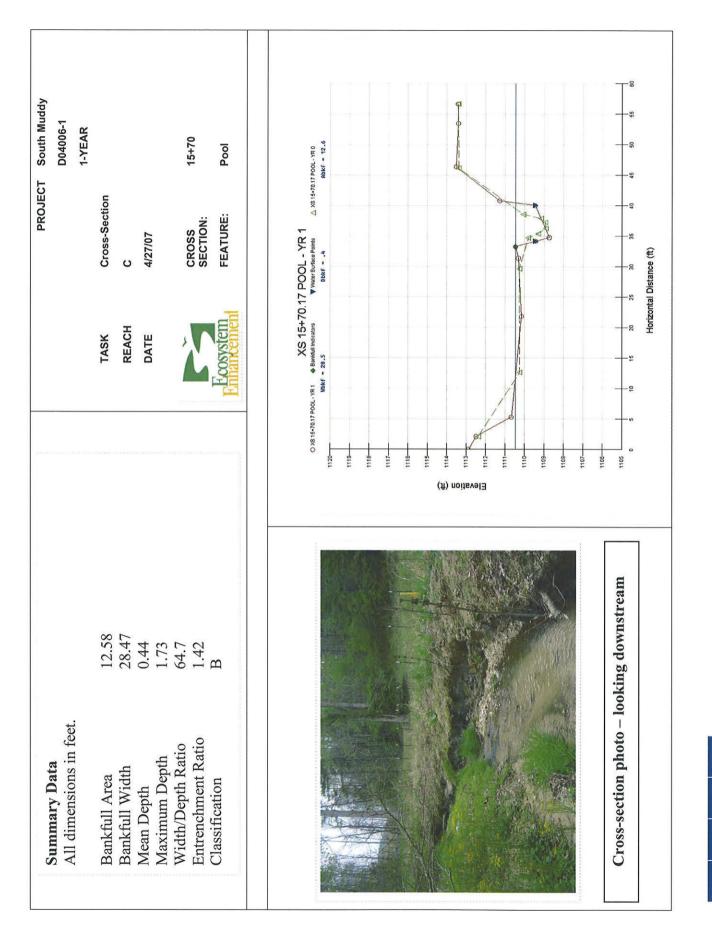

	Table B1. Visual Morphological Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A2	ability Assess EEP Project N 2	ment (o. D04006-0			
		(# Stable) Number	Total	Total Number / % Derform		Feature
		Da	number per	number per feet in unstable in Stable	=	Mean or
Feature Category	Metric (per As-built and reference baselines		As-built	state		Total
A. Riffles	1. Present?	7	7	0	100	
	2. Armor stable (e.g. no displacement)?	7	7	0	100	
	Facet grade appears stable?	2	7	0	100	
	4. Minimal evidence of embedding/fining?	9	7	1	100	
	5. Length appropriate?	7	7	0	86	97%
B. Pools	Present? (e.g. not subject to severe aggrad. or migrat.?)	7	2	0	100	
	Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	7	7	0	100	
	3. Length appropriate?	2	7	0	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	11	11	0	100	
	Downstream of meander (glide/inflection) centering?	11	11	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	11	11	0	100	
	Of those eroding, # w/concomitant point bar formation?	11	11	0	100	
	Apparent Rc within spec?	11	11	0	100	
	Sufficient floodplain access and relief?	11	11	0	100	100%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	2/ 65 feet	86%	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100%	93%
F. Vanes	1. Free of back or arm scour?	N/A	0	0 N/A	N/A	
	2. Height appropriate?	N/A	0	0 N/A	N/A	
	Angle and geometry appear appropriate?	N/A	0	0 N/A	N/A	
	Free of piping or other structural failures?	N/A	0	0 N/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour?	1. Free of scour?	N/A	0	0 N/A		
	2. Footing stable?	N/A	0	0 N/A	N/A	N/A

EMH[®]T





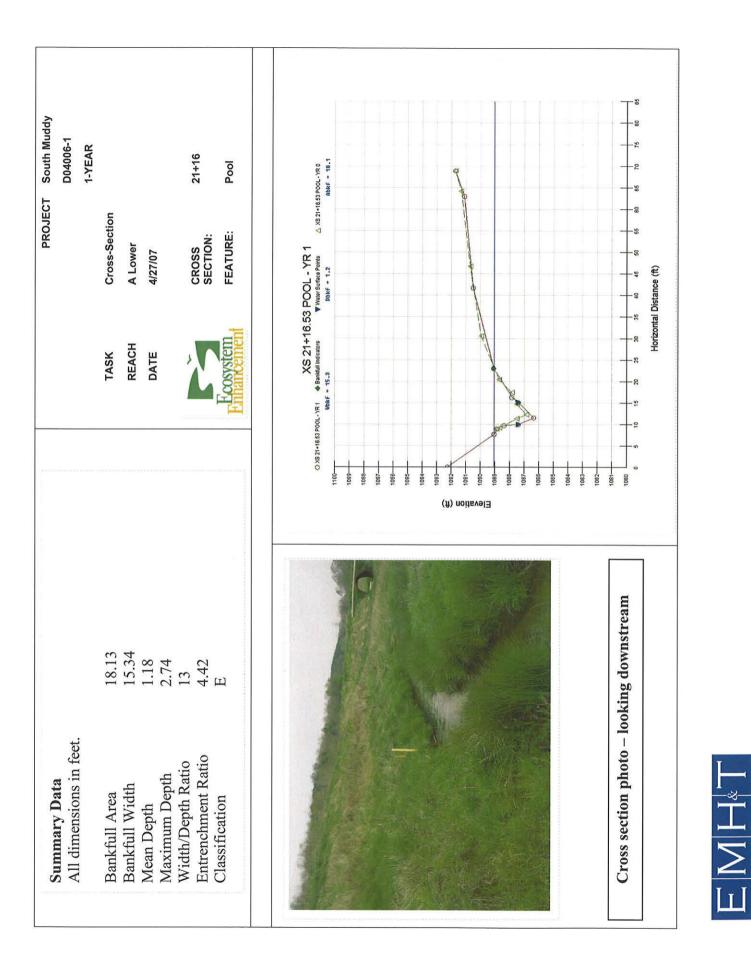

E M H[®]T



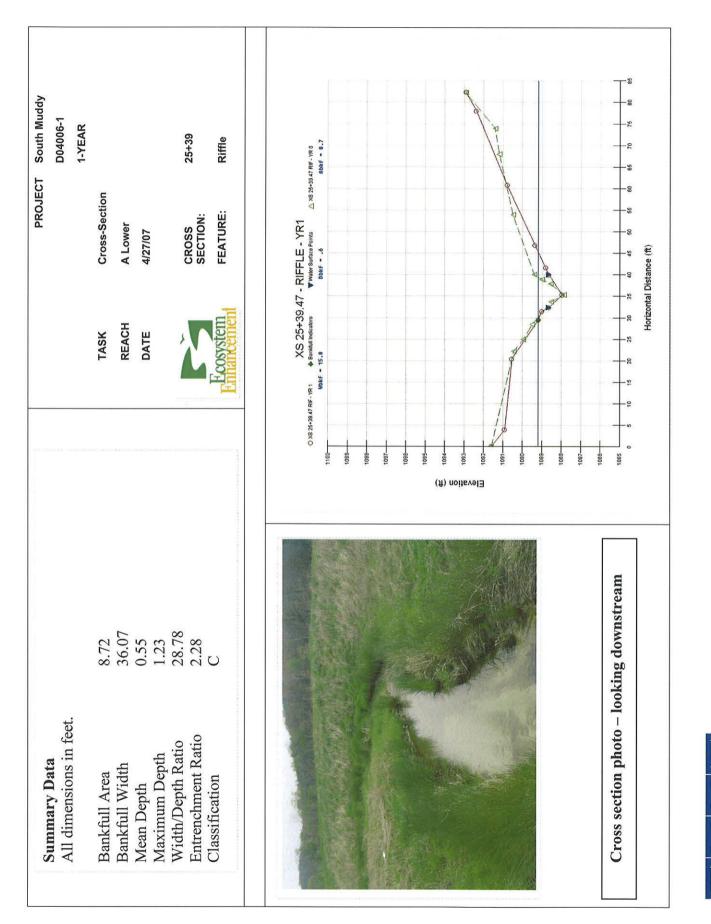
 $EMH^{k}T$

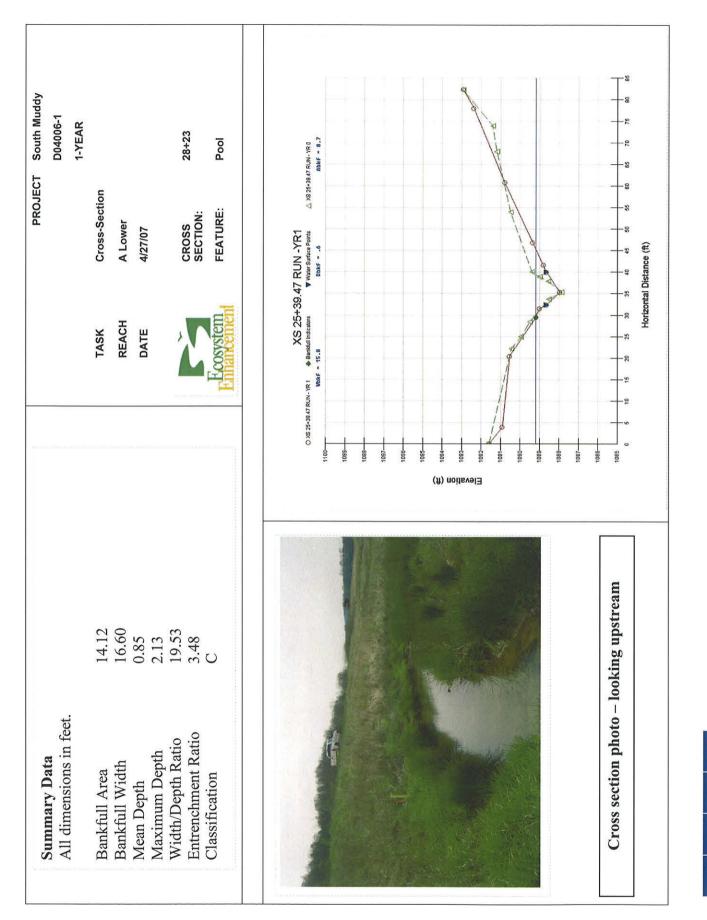


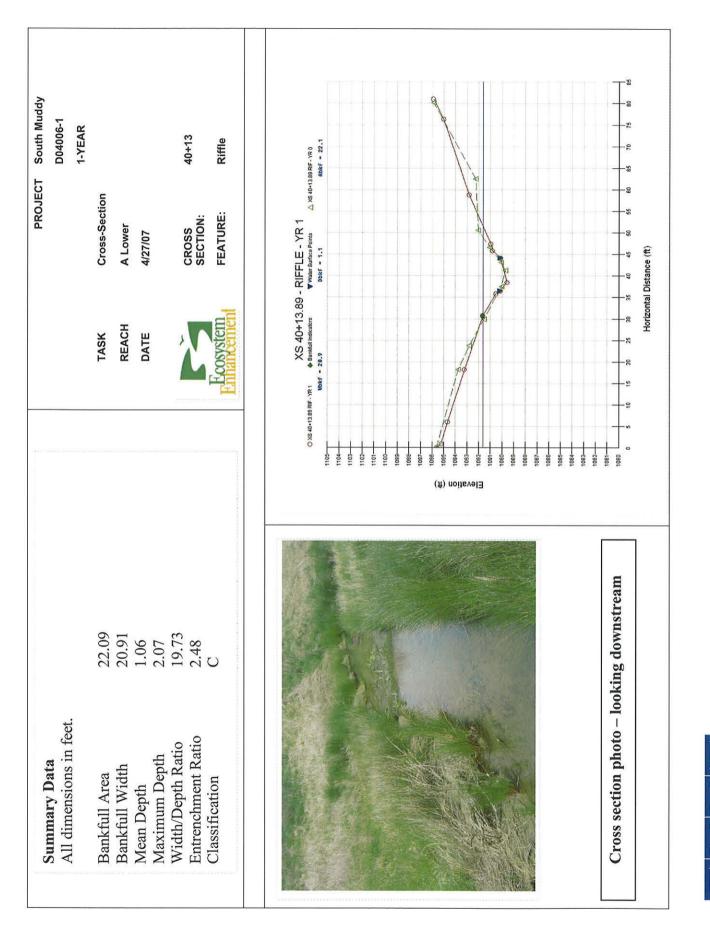
 $EMH^{*}T$

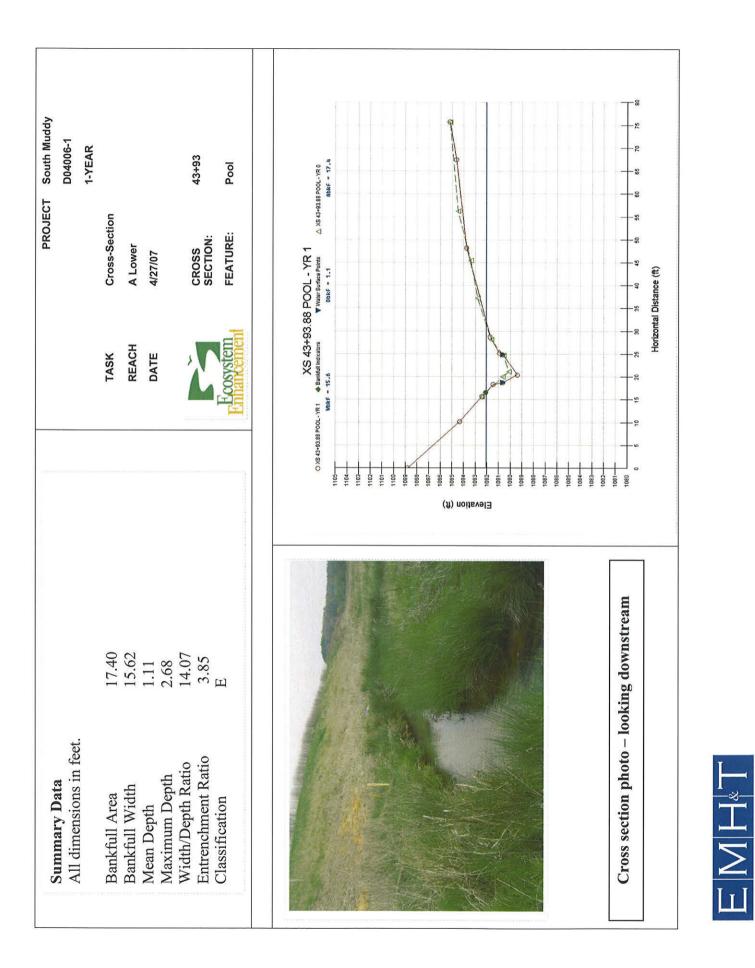


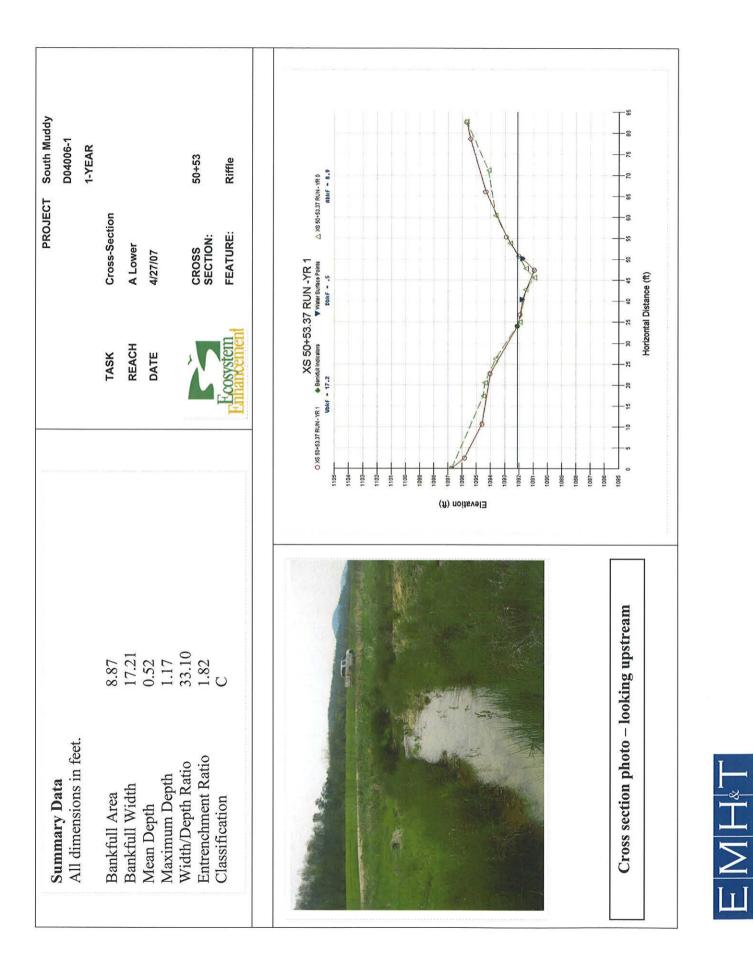
 $E M H^{*}T$

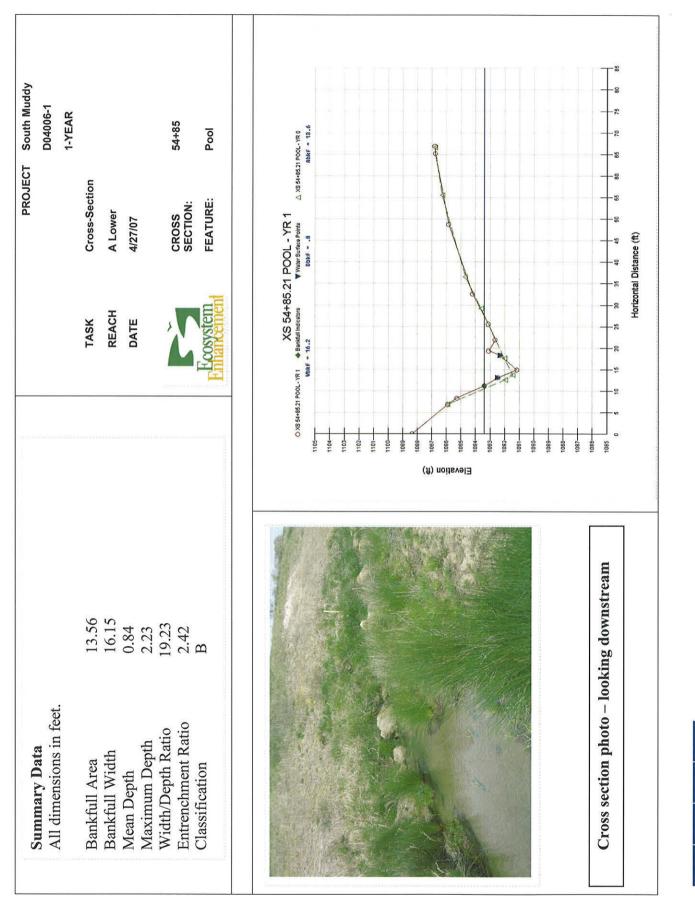


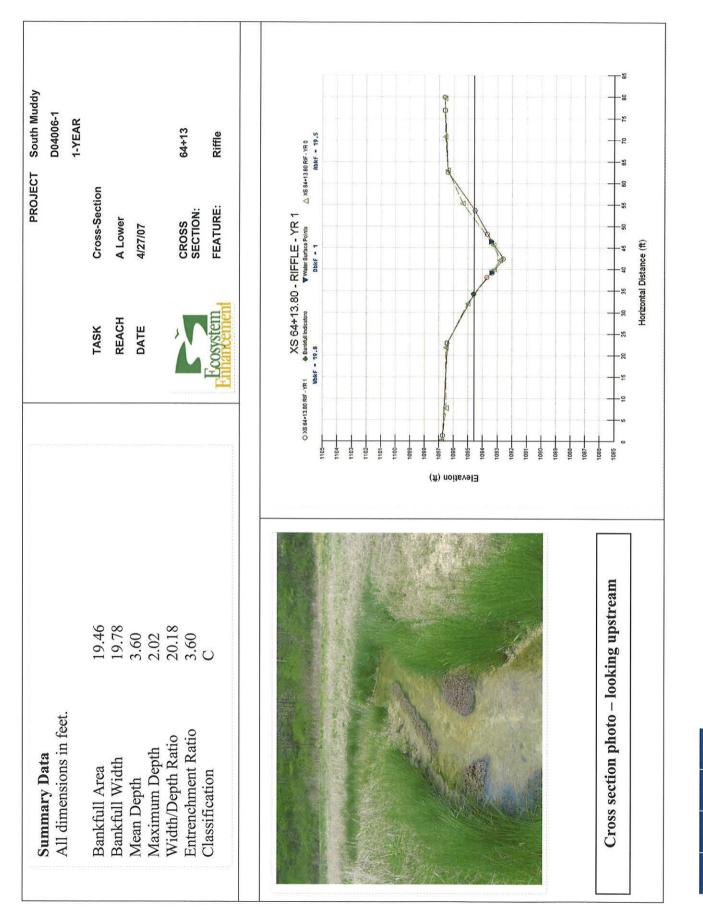

EMH[®]T

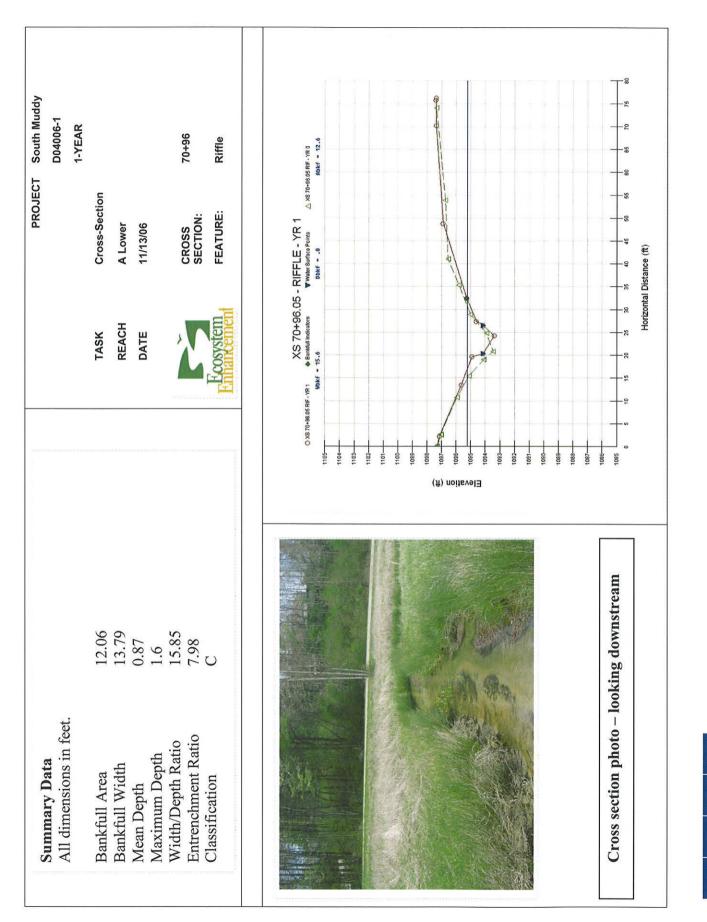


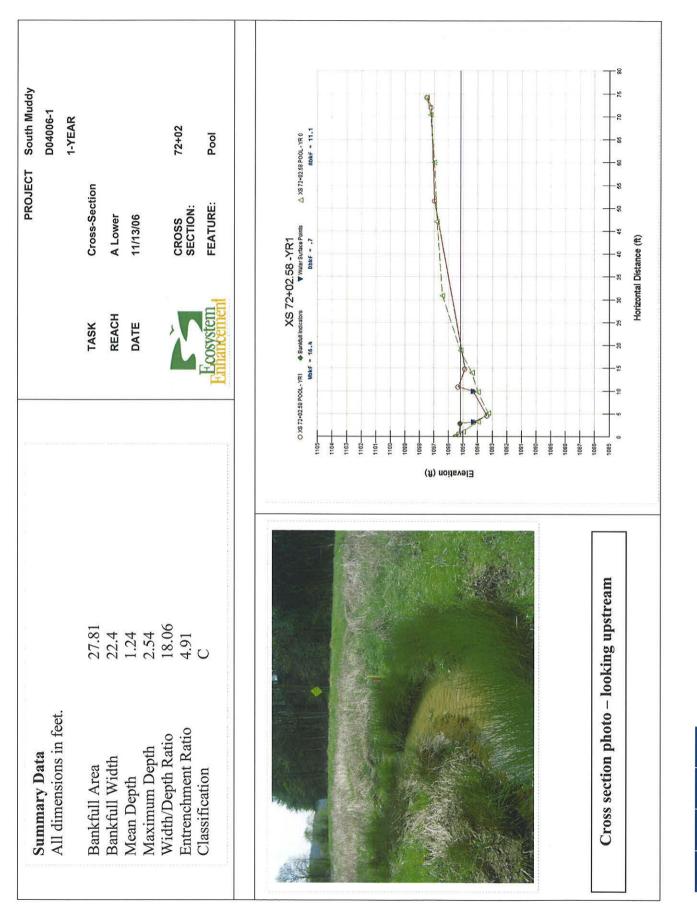




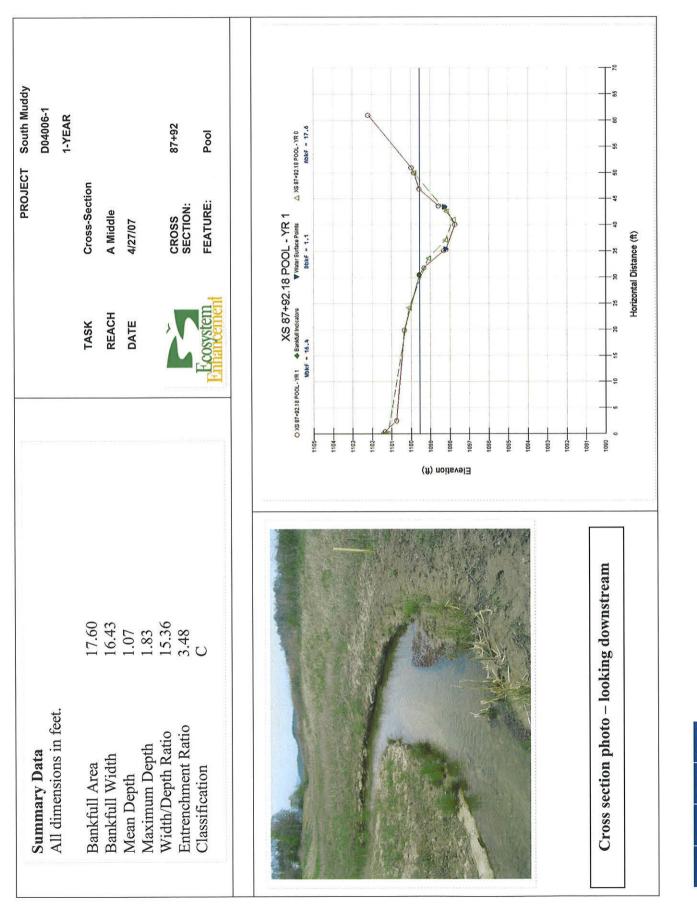


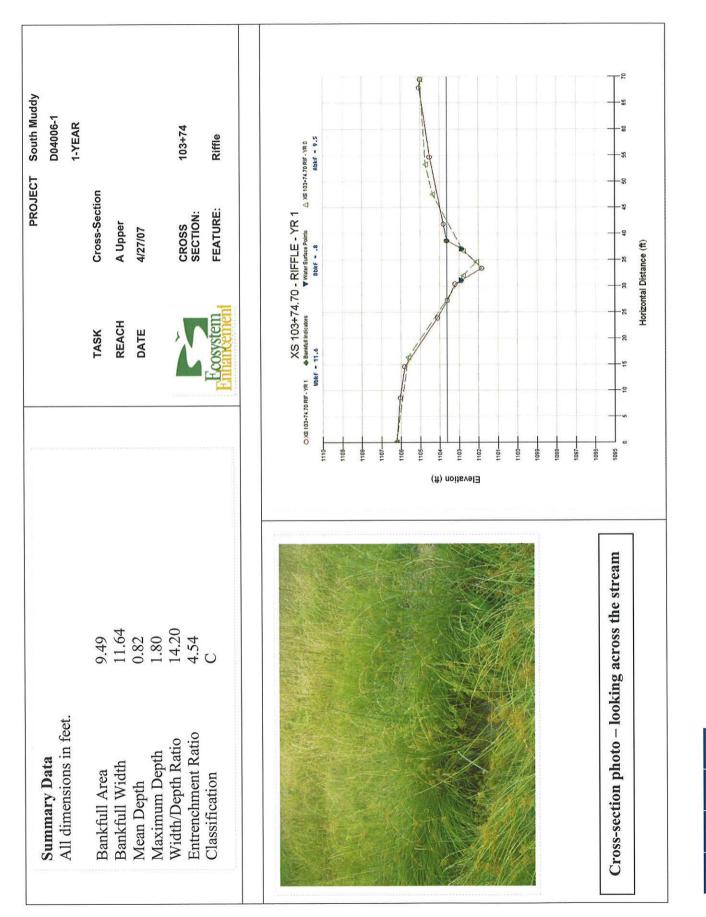


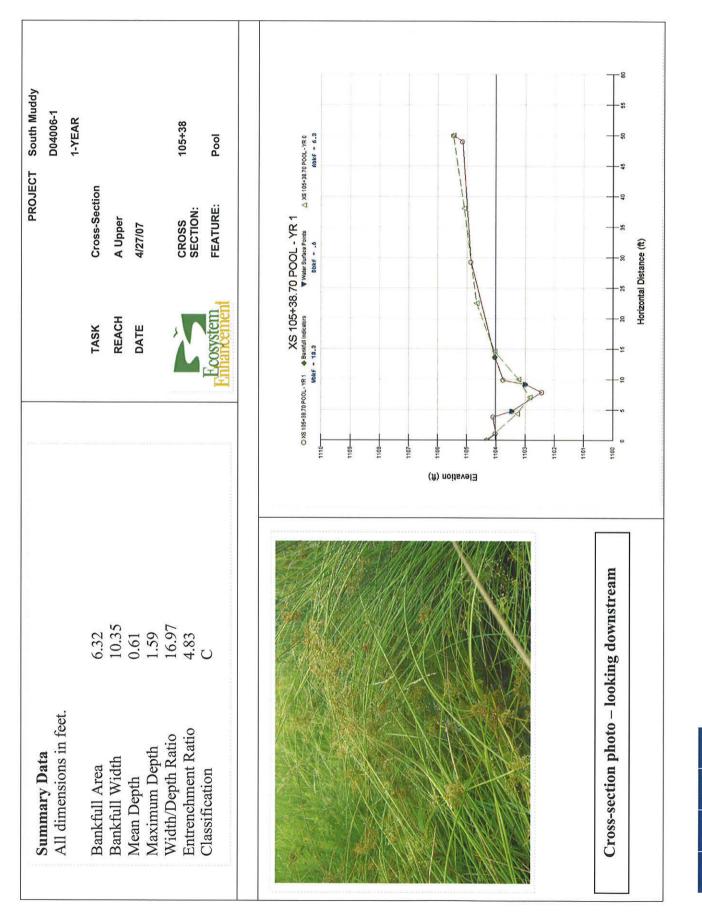


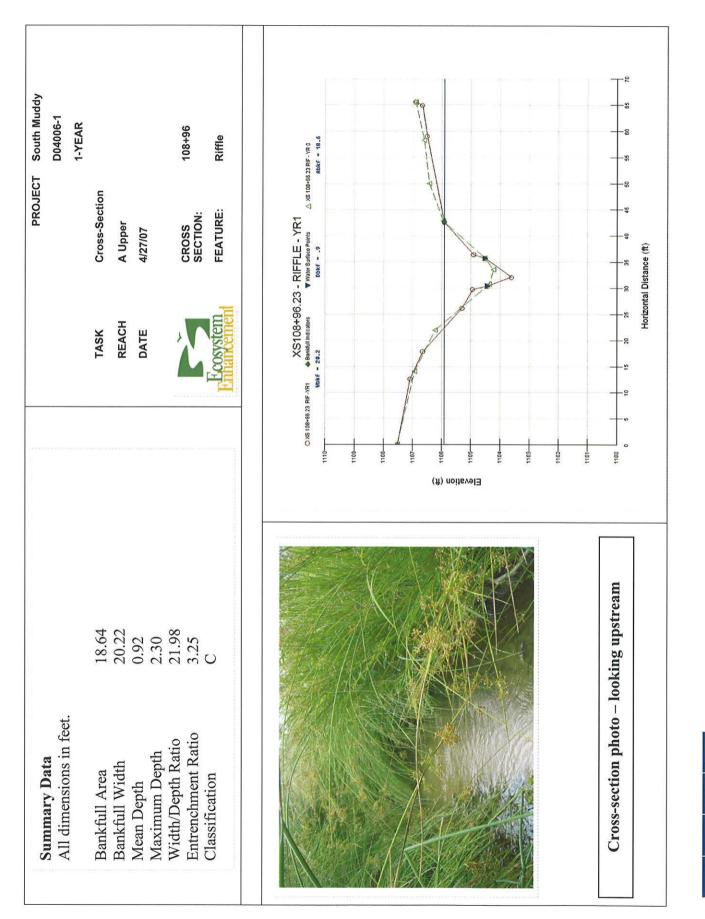


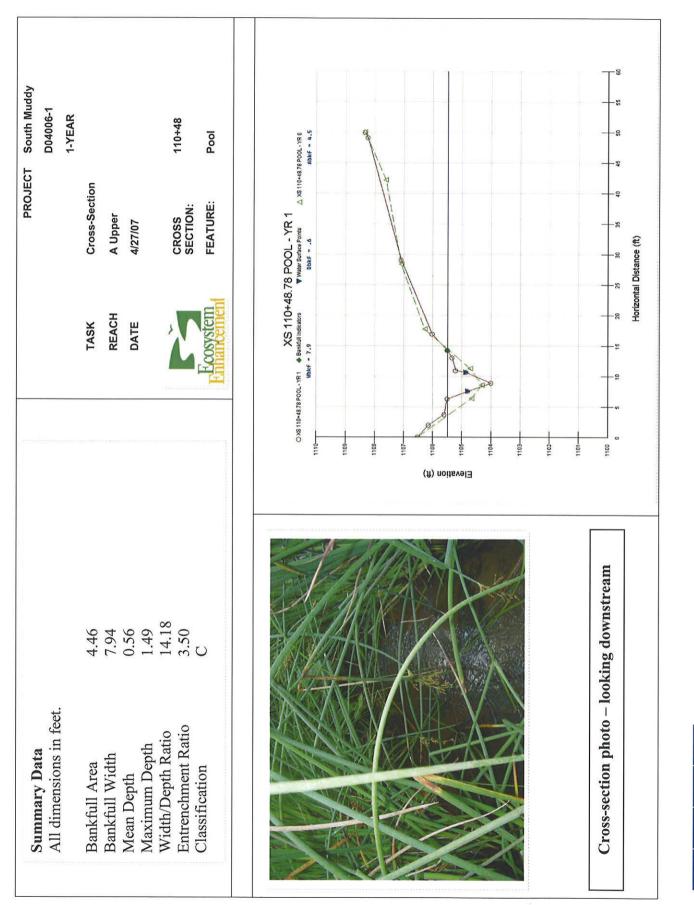
 $EMH^{\ast}T$

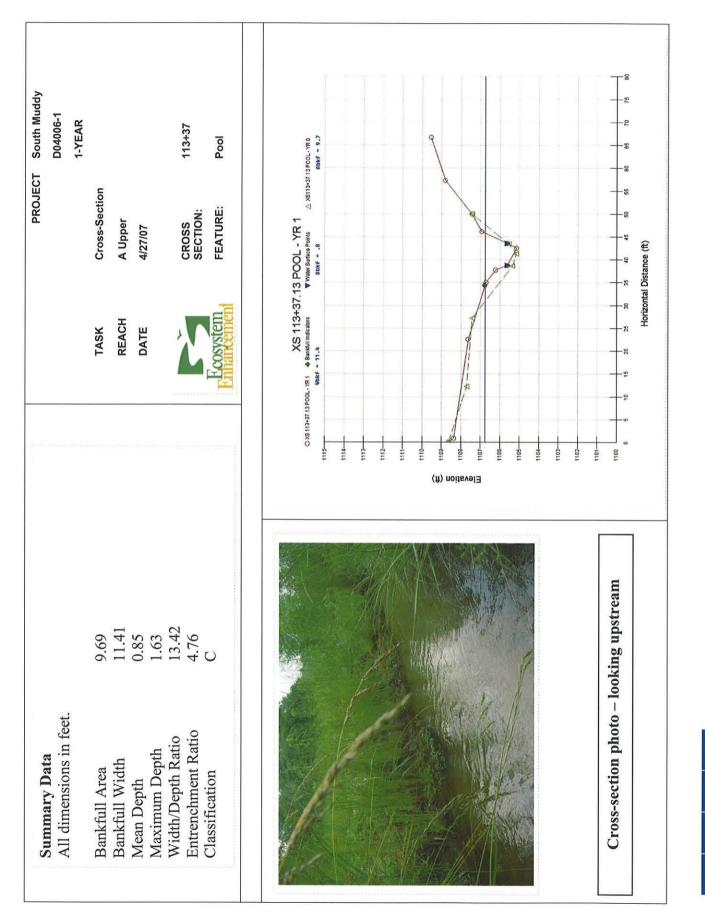


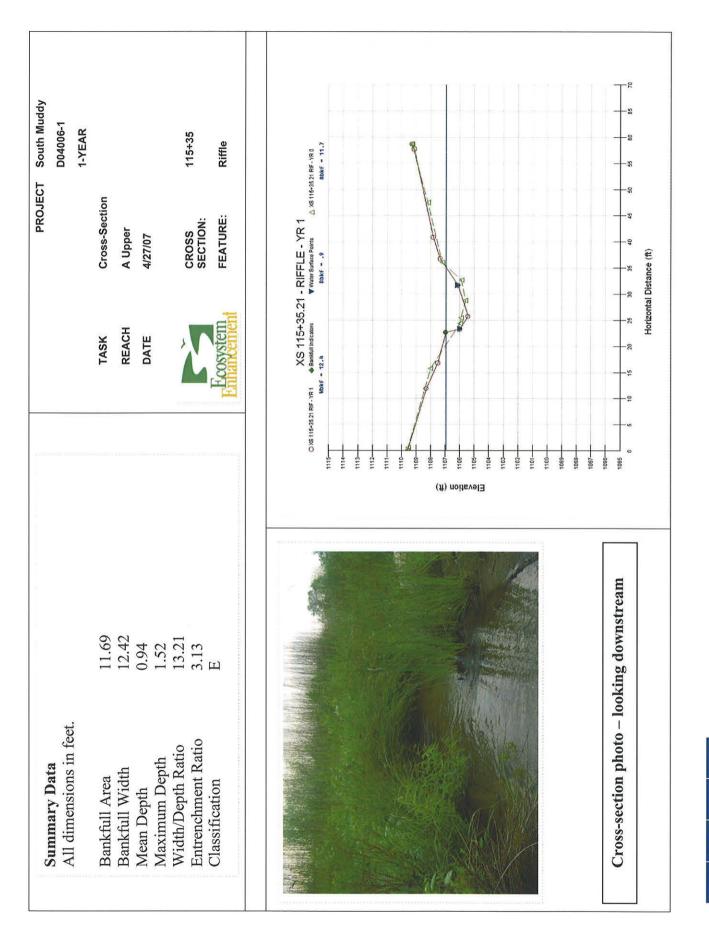


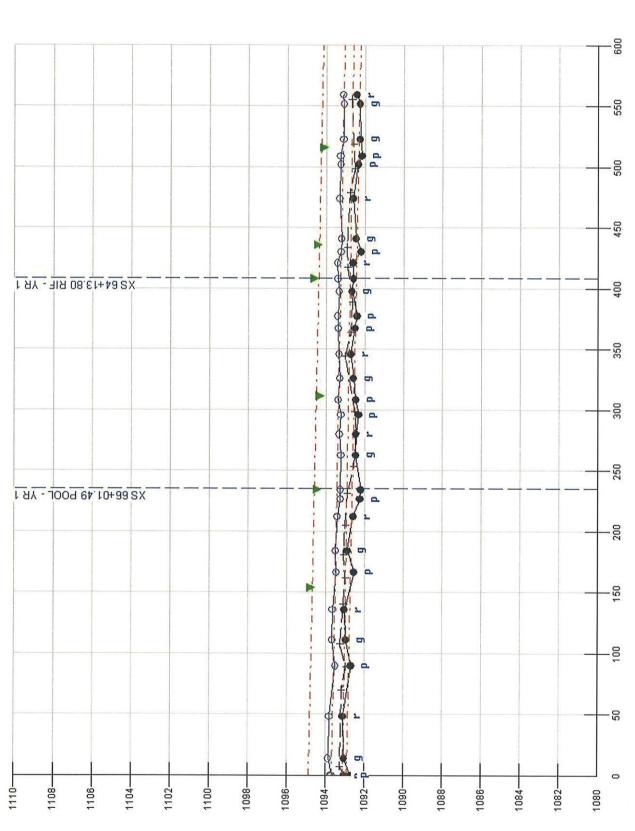








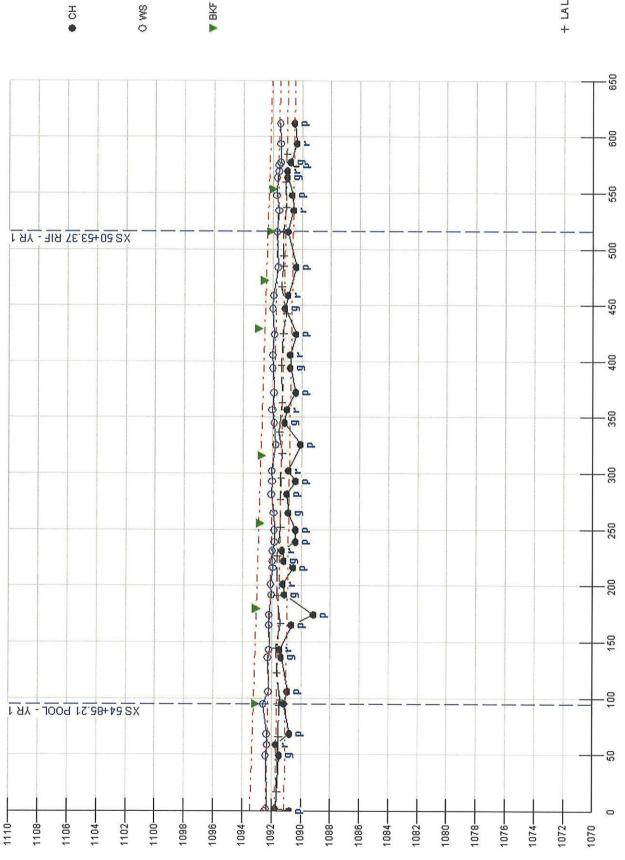




EMH®T

LOWER TRIB A - LONGITUDINAL PROFILE No. 1 - YR 1

(ft) noitsvel3

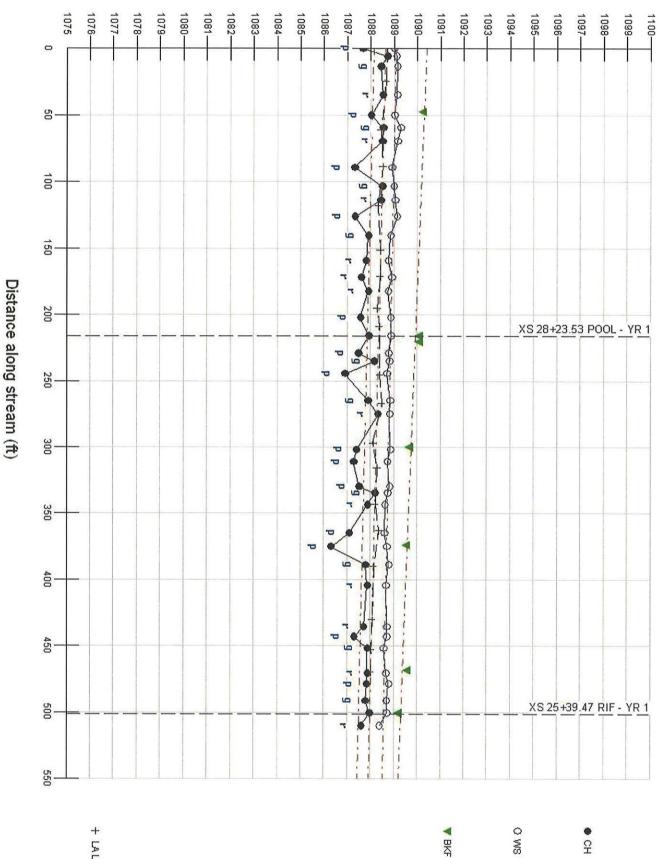

+ LALP1-YR 0

SW O

• CH

▼ BKF

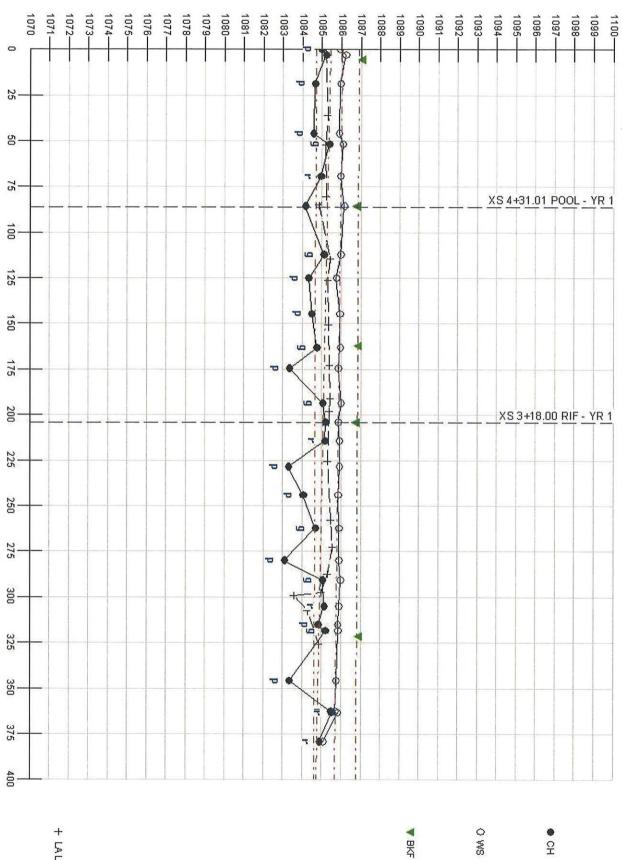
LOWER TRIB A - LONGITUDINAL PROFILE No. 2 - YEAR 1


(ft) noitsvel3

Distance along stream (ft)

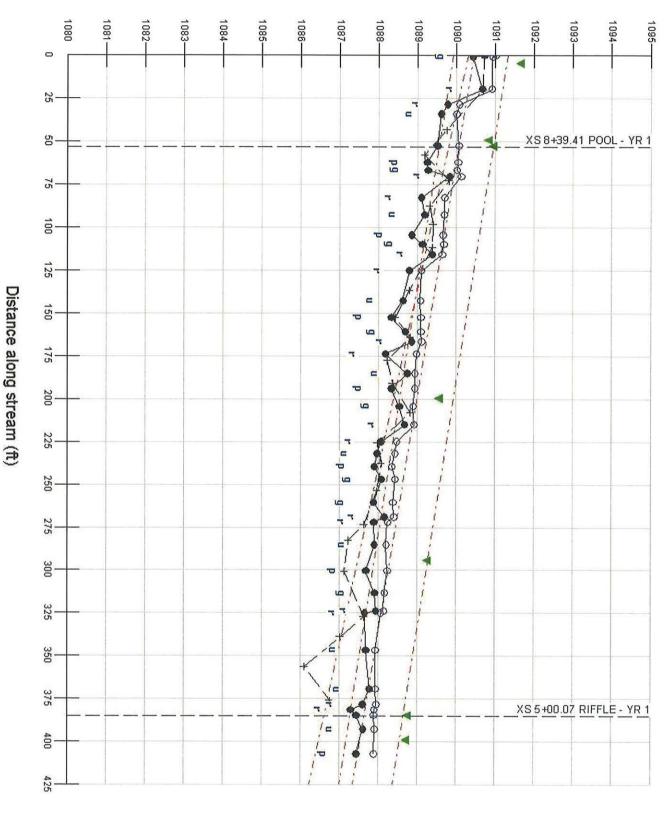
+ LALP2-YR0

O WS


BKF

LOWER TRIB A - LONGITUDINAL PROFILE No. 3 - YEAR 1

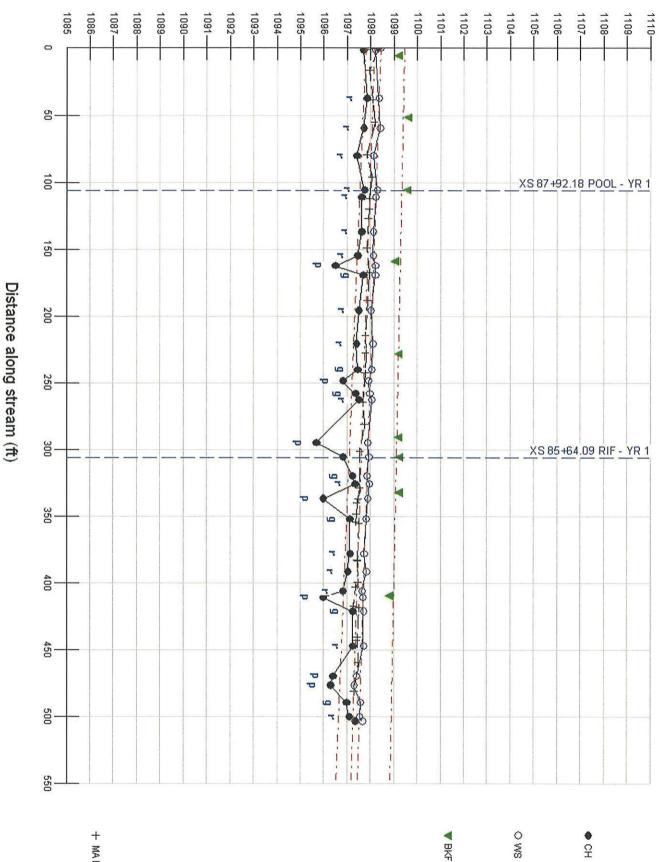
+ LALP3-YR0


Distance along stream (ft)

LOWER TRIB A - LONGITUDINAL PROFILE No. 4 - YEAR 1

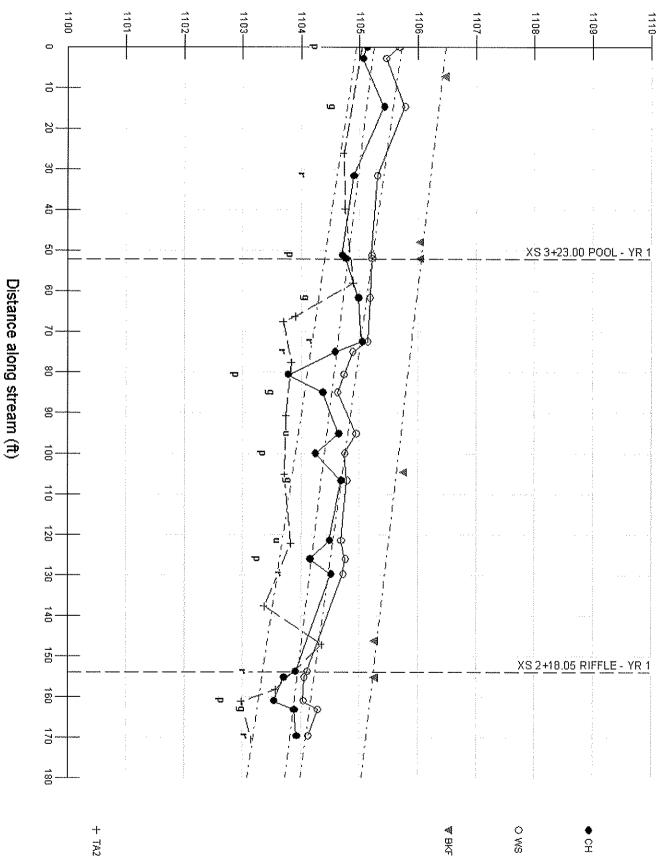
+ LA LP4 - YR 0

Elevation (ft)


LOWER TRIB B - LONGITUDINAL PROFILE - YEAR 1

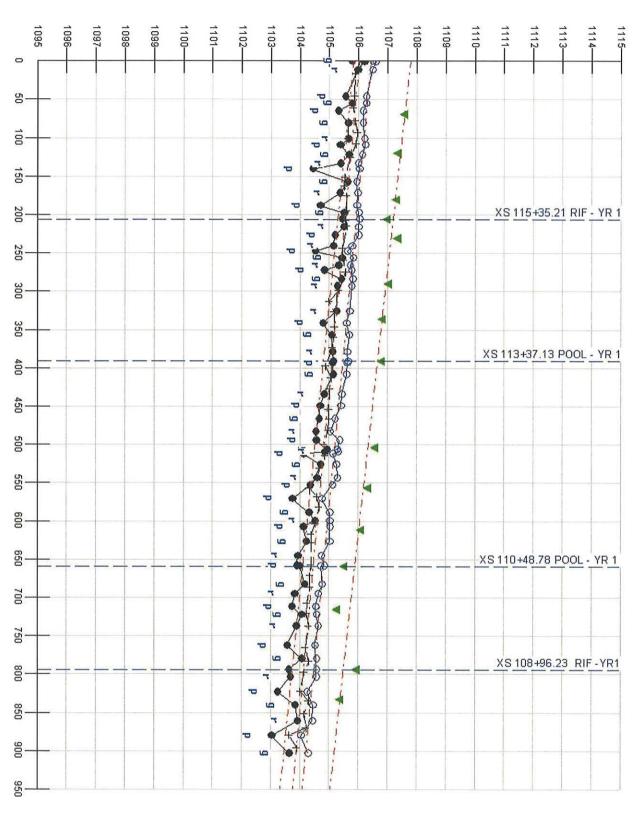
SM O

• CH


BKF

+ LTB LP - YR 0

+ MALP-YR0


MIDDLE TRIB A - LONGITUDINAL PROFILE - YR 1

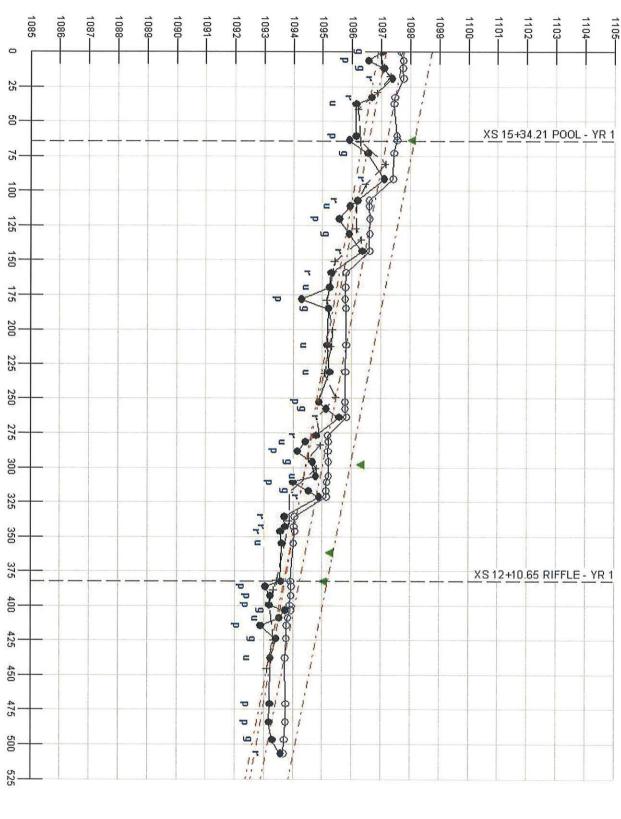
+ TA2 LP - YR 0

TRIB A2 LONGITUDINAL PROFILE - YEAR 1

Distance along stream (ft)

UPPER TRIB A - LONGITUDINAL PROFILE - YEAR 1

O WS


• CH

BKF

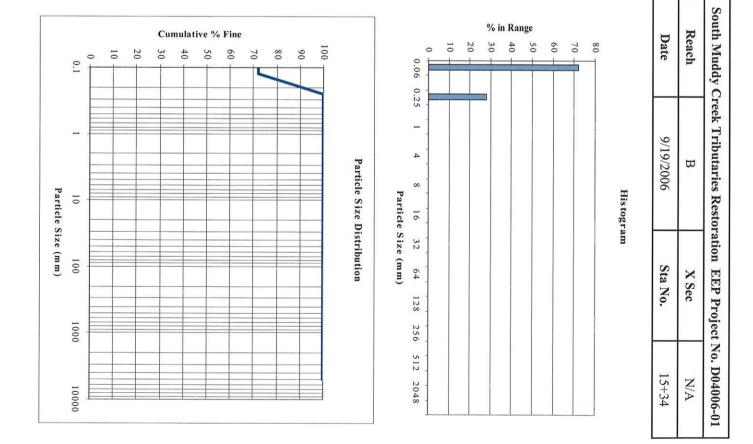
+ UTALP-YR0

Elevation (ft)

Distance along stream (ft)

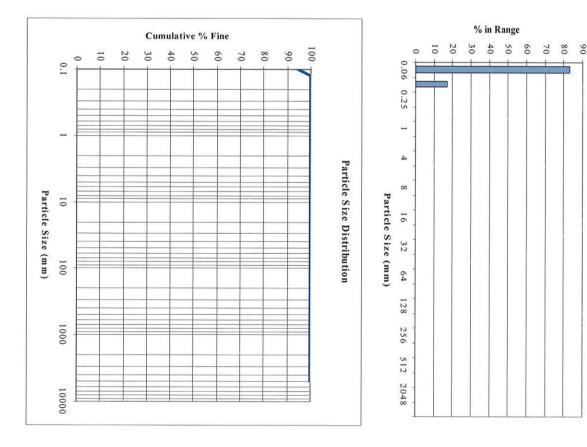
UPPER TRIB B - LONGITUDINAL PROFILE - YEAR 1

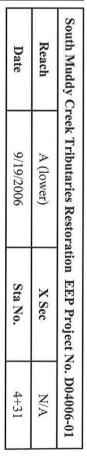
+ UTBLP-YR0


SM O

BKF

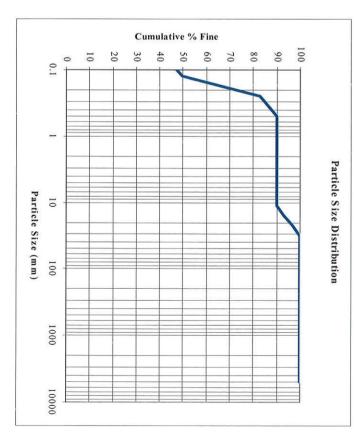
• 위

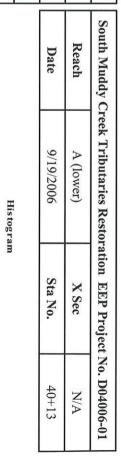

Elevation (ft)

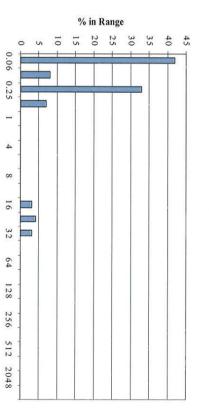

	100	100	als	Totals
100	0	0	<2048	Bedrock
100	0	0	1024-2048	Large Boulder
100	0	0	512-1024	Medium Boulder
100	0	0	362-512	Small Boulder
100	0	0	256-362	Small Boulder
100	0	0	180-256	Large Cobble
100	0	0	128-180	Large Cobble
100	0	0	90-128	Small Cobble
100	0	0	64-90	Small Cobble
100	0	0	45-64	Very Coarse Gravel
100	0	0	32-45	Very Coarse Gravel
100	0	0	22.6-32	Coarse Gravel
100	0	0	16.0-22.6	Coarse Gravel
100	0	0	11.3-16.0	Medium Gravel
100	0	0	8.0-11.3	Medium Gravel
100	0	0	5.7-8.0	Fine Gravel
100	0	0	4.0-5.7	Fine Gravel
001	0	0	2.0-4.0	Very Fine Gravel
100	0	0	1.0-2.0	Very Coarse Sand
001	0	0	0.5-1.0	Coarse Sand
100	0	0	0.25-0.5	Medium Sand
100	28	28	0.125-0.25	Fine Sand
72	0	0	0.062-0.125	Very Fine Sand
72	72	72	<0.062	Silt/Clay
% Cumulative	% in Range	Count	Particle Size (mm)	Material
				Pebble Count - Pool

Public Cum: First Statutic Structure Resonance in the structu		m m)	Particle Size (mm)			100	100	als	Totals				
Particle Size (mm) Count % in Range % Cumulative < 0.062 < 8 < 6 < 6 < 6 0.062 < 8 < 8 < 8 < 8 < 8 0.062 < 8 < 8 < 8 < 8 < 8 < 8 0.062 < 8 < 8 < 8 < 8 < 8 < 8 0.062 < 8 < 10 < 10 < 10 < 8 0.05 < 10 < 10 < 10 < 33 0.5 < 10 < 10 < 33 1.3 < 10 < 33 < 33 1.13 < 0 < 33 < 33 1.13 < 10 < 33 < 33 1.13 < 10 < 33 < 33 1.13 < 13 < 33 < 33 1.13 < 13 < 33 < 33 1.13 < 13 < 34 < 32 1.13 <	10000		10	0.1	100	0	0	<2048	Bedrock				
Ritrie Particle Size (mm) Count % in Range % Cumulative $< 0.062 - 0.125$ < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0					100	0	0	1024-2048	Large Boulder				
· Riffe Particle Size (mm) Count % in Range % Cumulative ad -0.062 8 8 ad $0.062-0.125$ 8 16 33 8 16 33 33 33 33 33 33 <			4		100	0	0	512-1024	Medium Boulder				
Image: Formation of the size (nmm) Count % in Range % Cumulative \sim 0.062.0.125 0 0 8 8 8 nd 0.062.0.125 0 0 0 8 8 8 nd 0.125-0.25 8 0 10 10 10 16 1 0.25-0.5 17 17 17 33 sand 1.0-2.0 0 0 33 sand 1.0-5.7 0 0 33 rel 8.0-11.3 0 33 33 rel 16.0-22.6 0 0 33 set 32.45 8 41 <td< td=""><td></td><td></td><td></td><td></td><td>100</td><td>0</td><td>0</td><td>362-512</td><td>Small Boulder</td></td<>					100	0	0	362-512	Small Boulder				
t- RiffleParticle Size (mm)Count% in Range% Cumulative \sim \sim 0.062 \sim \sim \sim \sim nd0.062-0.125 \sim \sim \sim \sim \sim \sim 0.125-0.25 \sim \sim \sim \sim \sim \sim 0.25-0.5 \sim \sim \sim \sim \sim \sim 0.5-1.0 \sim \sim \sim \sim \sim \sim 2.0-4.0 \sim \sim \sim \sim \sim \sim \sim 2.0-4.0 \sim \sim \sim \sim \sim \sim \sim 2.0-5.7 \sim \sim \sim \sim \sim \sim \sim \sim \sim 1.0-2.6 \sim 1.0-2.6 \sim \sim <t< td=""><td></td><td></td><td></td><td></td><td>100</td><td>0</td><td>0</td><td>256-362</td><td>Small Boulder</td></t<>					100	0	0	256-362	Small Boulder				
t. RiffieParticle Size (mm)Count% in Range% Cumulativeand $0.062 \cdot 0.125$ 0 0 8 8 and $0.125 \cdot 0.25$ 0 0 0 0 1 $0.25 \cdot 0.5$ 0 17 17 33 1 $0.25 \cdot 0.5$ 17 17 33 $3and$ $1.0 \cdot 2.0$ 0 0 0 33 $3arel2.0 \cdot 4.000334.0 \cdot 5.7003333rel8.0 \cdot 11.30033rel11.3 \cdot 16.00033116.0 \cdot 22.60033122.6 \cdot 320033122.6 \cdot 32034413ravel32 \cdot 458413ravel45.6417175841.9034349242.81808100$					100	0	0	180-256	Large Cobble				
Farticle Size (mm) Count % in Range % Cumulative and $0.062 - 0.125$ 0 0 0 0 0 and $0.062 - 0.125$ 0 0 0 0 0 $0.062 - 0.125$ 0 0 0 0 0 0 $0.125 - 0.25$ 0 0 0 0 0 0 1 $0.25 - 0.5$ 0 1 1 3 1 $0.25 - 0.5$ 0 1 1 3 3 $0.5 - 1.0$ 1 1 3 3 $2.0 - 4.0$ 0 0 3 3 $4.0 - 5.7$ 0 0 3 $avel 2.0 - 4.0 0 0 3 rel 8.0 - 11.3 0 0 3 rel 16.0 - 22.6 0 0 3 1 2.6 - 32 0 0 3 1 2.6 - 32 3 $					100	0	0	128-180	Large Cobble				
t - Riffle Particle Size (mm) Count % in Range % Cumulative \sim \sim 0.062 8 8 8 8 nd $0.062-0.125$ 0 0 8 8 8 nd $0.062-0.125$ 8 8 8 8 8 nd $0.062-0.125$ 8 8 8 8 8 1 $0.125-0.25$ 8 8 8 16 $0.25-0.5$ 0 17 33 16 $0.5-1.0$ 17 17 33 $avel 2.0-4.0 0 0 33 avel 2.0-4.0 0 0 33 avel 2.0-4.0 0 0 33 avel 2.0-4.0 0 0 33 e^1 1.0-5.7 0 0 33 e^1 1.3-16.0 0 33 33 e^1 16.0-22.6 0 33 33 e^1 16.0-22.6 30 33 34 41$					100	8	∞	90-128	Small Cobble				
RiffleParticle Size (mm)Count% in Range% Cumulative < 0.062 < 8 < 8 < 8 < 8 < 0.062 - < 0.125 < 0 < 8 < 8 < 8 < 0.125 - < 0.25 < 8 < 8 < 16 < 10 < 0.25 - < 0.5 < 17 < 17 < 33 < 0.5 - < 1.0 < 17 < 17 < 33 < 1.0 < 17 < 33 < 33 < 1.0 < 0 < 33 < 33 < 1.0 < 0 < 33 < 33 < 1.0 < 0 < 33 < 33 < 1.0 < 0 < 33 < 33 < 1.0 < 0 < 33 < 33 < 1.13 < 0 < 33 < 33 < 1.13 < 0 < 33 < 33 < 1.13 < 0 < 33 < 33 < 1.13 < 0 < 33 < 33 < 1.13 < 30 < 33 < 33 < 1.26 - < 32 < 30 < 33 < 33 < 1.26 - < 32 < 8 < 17 < 38 < 1.26 < 17 < 17 < 88				80	92	34	34	64-90	Small Cobble				
RiffleParticle Size (mm)Count $\%$ in Range $\%$ Cumulative $< 0.062 - 0.125$ < 8 < 8 < 8 $< 0.062 - 0.125$ < 0 < 8 < 8 $< 0.062 - 0.125$ < 0 < 0 < 8 $< 0.125 - 0.25$ < 0 < 0 < 8 $< 0.125 - 0.25$ < 10 < 10 < 16 $< 0.25 - 0.5$ < 17 < 17 < 33 $< 1.0 - 2.0$ < 17 < 17 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.0$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$ < 0 < 33 < 33 $< 1.0 - 2.6$				06	58	17	17	45-64	Very Coarse Gravel				
RiffiParticle Size (mm)Count% in Range% Cumulative< <td><0.062</td> 88%0.06200880.06200080.06200080.06200080.06200080.06200080.06200080.06200080.06200080.06200080.125000160.250003310003311.3003316.0003316.0003322.600020.320033	<0.062				100	41	8	8	32-45	Very Coarse Gravel			
RiffleParticle Size (mm)Count% in Range% Cumulative<0.062		ution	Particle Size Distribu		33	0	0	22.6-32	Coarse Gravel				
RiffleParticle Size (mm)Count% in Range% Cumulative<		S Samo-S	 A state of the sta		33	0	0	16.0-22.6	Coarse Gravel				
RiffleParticle Size (mm)Count% in Range% Cumulative< <td><<td><<td><<td>% 0.062888<</td><td></td><td>128 256</td><td>1 4 8</td><td></td><td>33</td><td>0</td><td>0</td><td>11.3-16.0</td><td>Medium Gravel</td></td></td></td>	< <td><<td><<td>% 0.062888<</td><td></td><td>128 256</td><td>1 4 8</td><td></td><td>33</td><td>0</td><td>0</td><td>11.3-16.0</td><td>Medium Gravel</td></td></td>	< <td><<td>% 0.062888<</td><td></td><td>128 256</td><td>1 4 8</td><td></td><td>33</td><td>0</td><td>0</td><td>11.3-16.0</td><td>Medium Gravel</td></td>	< <td>% 0.062888<</td> <td></td> <td>128 256</td> <td>1 4 8</td> <td></td> <td>33</td> <td>0</td> <td>0</td> <td>11.3-16.0</td> <td>Medium Gravel</td>	% 0.062888<		128 256	1 4 8		33	0	0	11.3-16.0	Medium Gravel
Int - RiffleParticle Size (mm)Count% in Range% Cumulative < 0.062 < 8 $%$ in Range% Cumulativeand 0.062 - 0.125 < 8 < 8 < 8 < 0.125 - 0.25 < 0 < 0 < 8 < 8 nd 0.25 - 0.5 < 0 < 16 < 16 < 14 0.5 - 1.0 < 17 < 17 < 33 $< 8and$ 1.0 - 2.0 < 0 < 0 < 33 $< 8and$ 2.0 - 4.0 < 0 < 33 < 33 < 4.0 - 5.7 < 0 < 0 < 33 < 5.7 - 8.0 < 0 < 0 < 33					33	0	0	8.0-11.3	Medium Gravel				
iffleParticle Size (mm)Count% in Range% Cumulative < 0.062 8888 0.062 - 0.125 0008 0.125 - 0.25 8816 0.25 - 0.5 0016 0.5 - 1.0 171733 1.0 - 2.0 0033 2.0 - 4.0 0033 4.0 - 5.7 0033				5	33	0	0	5.7-8.0	Fine Gravel				
iffleParticle Size (mm)Count% in Range% Cumulative <a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" td=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" td=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" td=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a a="" close<=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" td=""><a close<="" p=""><a a="" close<=""><a close<="" td=""><a a="" close<=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" td=""><a close<="" p=""><a a="" close<=""><a a="" close<=""><a close<="" td=""><td></td><td></td><td></td><td></td><td>33</td><td>0</td><td>0</td><td>4.0-5.7</td><td>Fine Gravel</td>					33	0	0	4.0-5.7	Fine Gravel				
Iffle Particle Size (mm) Count % in Range % Cumulative <0.062					33	0	0	2.0-4.0	Very Fine Gravel				
Particle Size (mm) Count % in Range % Cumulative <0.062					33	0	0	1.0-2.0	Very Coarse Sand				
Particle Size (mm) Count % in Range % Cumulative <0.062				30	33	17	17	0.5-1.0	Coarse Sand				
Fount - Riffe Particle Size (mm) Count % in Range % Cumulative <0.062				40	16	0	0	0.25-0.5	Medium Sand				
Particle Size (mm) Count % in Range % Cumulative <0.062			Histogram		16	8	8	0.125-0.25	Fine Sand				
ount - Riffle Particle Size (mm) Count % in Range % Cumulative <0.062					8	0	0	0.062-0.125	Very Fine Sand				
ount - Riffle Particle Size (mm) Count % in Range % Cumulative	2+25	Sta No.	9/19/2006	Date	8	8	8	<0.062	Silt/Clay				
	N/A	X Sec	В	Reach	% Cumulative	% in Range	Count	Particle Size (mm)	Material				
	o. D04006-01	1 EEP Project N	eek Tributaries Restoration	South Muddy Cr				ν,	Pebble Count - Riffle				

Pebble Count - Pool				
Material	Particle Size (mm)	Count	% in Range	% Cumulative
Silt/Clay	<0.062	83	83	83
Very Fine Sand	0.062-0.125	17	17	100
Fine Sand	0.125-0.25	0	0	100
Medium Sand	0.25-0.5	0	0	100
Coarse Sand	0.5-1.0	0	0	100
Very Coarse Sand	1.0-2.0	0	0	001
Very Fine Gravel	2.0-4.0	0	0	001
Fine Gravel	4.0-5.7	0	0	100
Fine Gravel	5.7-8.0	0	0	100
Medium Gravel	8.0-11.3	0	0	100
Medium Gravel	11.3-16.0	0	0	100
Coarse Gravel	16.0-22.6	0	0	100
Coarse Gravel	22.6-32	0	0	100
Very Coarse Gravel	32-45	0	0	100
Very Coarse Gravel	45-64	0	0	100
Small Cobble	64-90	0	0	100
Small Cobble	90-128	0	0	100
Large Cobble	128-180	0	0	100
Large Cobble	180-256	0	0	100
Small Boulder	256-362	0	0	100
Small Boulder	362-512	0	0	100
Medium Boulder	512-1024	0	0	100
Large Boulder	1024-2048	0	0	100
Bedrock	<2048	0	0	100
Totals	als	100	100	

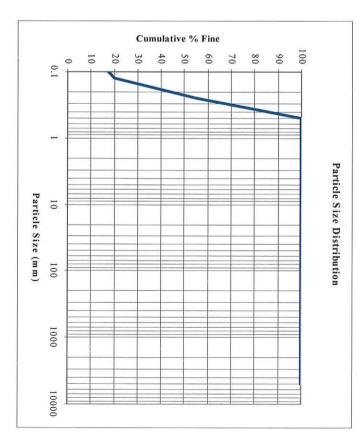


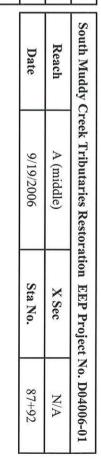


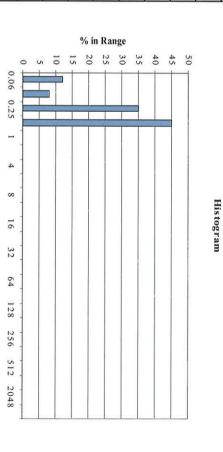


î.

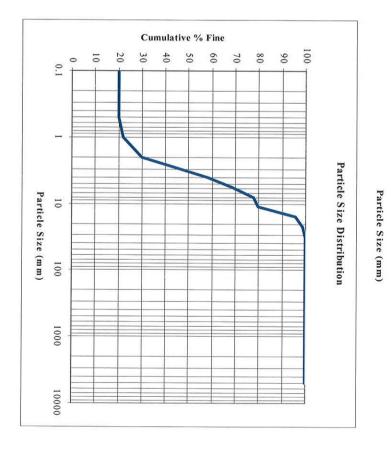
	100	100	als	Totals
100	0	0	<2048	Bedrock
100	0	0	1024-2048	Large Boulder
100	0	0	512-1024	Medium Boulder
100	0	0	362-512	Small Boulder
100	0	0	256-362	Small Boulder
100	0	0	180-256	Large Cobble
100	0	0	128-180	Large Cobble
100	0	0	90-128	Small Cobble
100	0	0	64-90	Small Cobble
100	0	0	45-64	Very Coarse Gravel
100	0	0	32-45	Very Coarse Gravel
100	3	3	22.6-32	Coarse Gravel
97	4	4	16.0-22.6	Coarse Gravel
93	3	3	11.3-16.0	Medium Gravel
06	0	0	8.0-11.3	Medium Gravel
06	0	0	5.7-8.0	Fine Gravel
06	0	0	4.0-5.7	Fine Gravel
06	0	0	2.0-4.0	Very Fine Gravel
06	0	0	1.0-2.0	Very Coarse Sand
06	0	0	0.5-1.0	Coarse Sand
06	7	7	0.25-0.5	Medium Sand
83	33	33	0.125-0.25	Fine Sand
50	8	8	0.062-0.125	Very Fine Sand
42	42	42	<0.062	Silt/Clay
% Cumulative	% in Range	Count	Particle Size (mm)	Material
			e	Pebble Count - Riffle

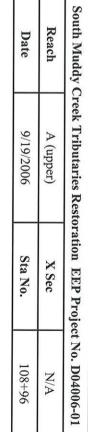


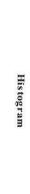


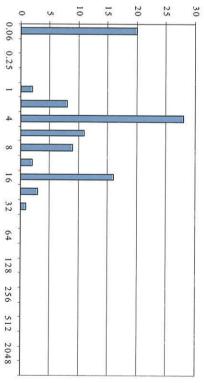


0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100	0 0 0 0 0	1024-2048 <2048	Bedrock
	0 0 0 0	1024-2048	14141
	0 0 0 0		Large Boulder
	0 0	512-1024	Medium Boulder
	0 0	362-512	Small Boulder
	0	256-362	Small Boulder
		180-256	Large Cobble
	0	128-180	Large Cobble
	0	90-128	Small Cobble
	0	64-90	Small Cobble
	0	45-64	Very Coarse Gravel
	0	32-45	Very Coarse Gravel
	0	22.6-32	Coarse Gravel
	0	16.0-22.6	Coarse Gravel
	0	11.3-16.0	Medium Gravel
	0	8.0-11.3	Medium Gravel
	0	5.7-8.0	Fine Gravel
0 100	0	4.0-5.7	Fine Gravel
0 100	0	2.0-4.0	Very Fine Gravel
0 100	0	1.0-2.0	Very Coarse Sand
0 100	0	0.5-1.0	Coarse Sand
45 100	45	0.25-0.5	Medium Sand
35 55	35	0.125-0.25	Fine Sand
8 20	8	0.062-0.125	Very Fine Sand
12 12	12	<0.062	Silt/Clay
% in Range % Cumulative	Count 9	Particle Size (mm)	Material
			Pebble Count - Pool


Particle Size (mm)







$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Medium Gravel8.0-11.3Medium Gravel11.3-16.0Coarse Gravel16.0-22.6Coarse Gravel22.6-32Very Coarse Gravel32-45Very Coarse Gravel32-45Very Coarse Gravel45-64Small Cobble64-90Small Cobble128-180Large Cobble128-256Small Boulder256-362Small Boulder362-512Medium Boulder512-1024Large Boulder1024-2048Bedrock<2048
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vel vel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vel vel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	el di
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vel 91 91 Gravel Gravel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vel yl Gravel Gravel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vel !! Gravel Gravel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/el /el l l Gravel Gravel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/el /el /l Gravel Gravel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 0 2 8 8 28 11 9 9 16	
0 2 2 8 8 11 11 28 28 28 28 28 21 21 21 21 21 21 21 21 21 21	10-04
0 0 2 2 8 28 11 9	
11 11 11 11 10 10 10 10 10 10	Fine Gravel 5.7-8.0
28	Fine Gravel 4.0-5.7
8 2 0	Very Fine Gravel 2.0-4.0
2 0	Very Coarse Sand 1.0-2.0
0	Coarse Sand 0.5-1.0
<	Medium Sand 0.25-0.5
	Fine Sand 0.125-0.25
0 0 20	Very Fine Sand 0.062-0.125
20 20 20	Silt/Clay <0.062
(mm) Count % in Range % Cumulative	Material Particle Size (mm)
	Pebble Count - Riffle

% in Range

